
2026/02/03 10:20 1/13 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Modèles

Un modèle est une classe métier, représentant une partie des données d'une application. Dans la plupart des
cas, un modèle est associé à une table de la base de données.
Phalcon\Mvc\Model est la classe de base des models d'une application. Cette classe met à disposition des
fonctionnalités CRUD, offre des possibilités de recherche avancées, et permet de gérer les relations entre
models, le tout sans avoir besoin d'utiliser SQL.

-- Création de models

<?php

class Utilisateur extends \Phalcon\Mvc\Model
{

}

<?php
class Utilisateur extends \Phalcon\Mvc\Model{

 /**
 *
 * @var string
 */
 protected $prenom;

 /**
 *
 * @var string
 */
 protected $nom;

 /**
 * Method to set the value of field prenom
 *
 * @param string $prenom
 * @return $this
 */
 public function setPrenom($prenom)
 {
 $this->prenom = $prenom;

 return $this;
 }

http://docs.phalconphp.com/en/latest/api/Phalcon_Mvc_Model.html

Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421455048

http://slamwiki2.kobject.net/ Printed on 2026/02/03 10:20

 /**

 /**
 * Method to set the value of field nom
 *
 * @param string $nom
 * @return $this
 */
 public function setNom($nom)
 {
 $this->nom = $nom;

 return $this;
 }

 /**
 * Returns the value of field prenom
 *
 * @return string
 */
 public function getPrenom()
 {
 return $this->prenom;
 }

 /**
 * Returns the value of field nom
 *
 * @return string
 */
 public function getNom()
 {
 return $this->nom;
 }

}

-- Mappage Objet <=> Relationnel

Par défaut, Phalcon effectue un mappage entre classes et tables de la base de données de la façon suivante :

Table ⇔ Classe du même nom
Enregistrement ⇔ instance de classe (objet métier)
Colonne (champ) ⇔ membre de données du même nom

2026/02/03 10:20 3/13 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Base de données (Table) Modèle objet (Classe)

-- Mappage nom de table/classe

Si le nom de la table de la base de données ne correspond pas au nom de la classe, il est possible de surdéfinir
la méthode getSource :

class Users extends \Phalcon\Mvc\Model{

 //Retourne le nom de la table correspondant à la classe
 public function getSource(){
 return "Utilisateur";
 }

}

-- Mappage des noms de champs/membres

De même, si les noms de champ de la table ne correspondent pas aux membres de données de la classe :

<?php

class Utilisateur extends \Phalcon\Mvc\Model
{
 protected $code;
 protected $name;
 public function columnMap()
 {
 //Les clés correspondent aux noms dans la table

Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421455048

http://slamwiki2.kobject.net/ Printed on 2026/02/03 10:20

 //Les valeurs aux noms dans l'application
 return array(
 'id' => 'code',
 'nom' => 'name'
);
 }

}

-- Relations

Avec Phalcon, les relations peuvent être définies grâce à la méthode initialize() du modèle. Les méthodes
belongsTo(), hasOne(), hasMany() and hasManyToMany() definissent des relations entre 1 ou plusieurs
membres du modèle courant et des membres d'un autre modèle. Chacune de ces méthodes requiert 3
paramètres : le membre local, le modèle cible, les membres cibles.

Méthode Description
hasMany Defines a 1-n relationship
hasOne Defines a 1-1 relationship
belongsTo Defines a n-1 relationship
hasManyToMany Defines a n-n relationship

--belongsTo (relation n-1) & hasMany (relation 1-n)

Exemple :

Base de données (Table) Modèle objet (Classe)

-- belongsTo

Chaque utilisateur appartient à une catégorie :

class Utilisateur extends \Phalcon\Mvc\Model{

 ...

2026/02/03 10:20 5/13 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 /**
 *
 * @var integer
 */
 protected $idCategorie;

 public function initialize()
 {
 $this->belongsTo("idCategorie", "Categorie", "id");
 }
 ...

Les paramètres passés à la méthode belongsTo sont :

idCategorie : membre local intervenant dans l'association (clé étrangère)1.
Categorie : Classe référencée associée2.
id : membre référencé dans la classe associée3.

Création d'une action dans le contrôleur IndexController pour afficher un utilisateur et sa catégorie :

<?php

class IndexController extends \Phalcon\Mvc\Controller{
 ...
 public function showUserAction($id){
 $user=Utilisateur::findFirst($id);
 echo $user->getNom()." : ".$user->getCategorie()->getNom();
 }
}

Affichage de la réponse obtenue :

Phalcon charge l'utilisateur, et l'instance de catégorie correspondant, accessible grâce aux méthodes magiques
_set et _get

-- hasMany

Chaque catégorie est associée à 1 ou plusieurs utilisateurs :

Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421455048

http://slamwiki2.kobject.net/ Printed on 2026/02/03 10:20

class Categorie extends \Phalcon\Mvc\Model{

 /**
 *
 * @var integer
 */
 protected $id;

 /**
 *
 * @var string
 */
 protected $nom;

 public function initialize(){
 $this->hasMany("id", "Utilisateur",
"idCategorie",array("alias"=>"utilisateurs"));
 }
 ...

Les paramètres passés à la méthode hasMany sont :

id : membre local intervenant dans l'association (clé primaire)1.
Utilisateur : Classe associée2.
idCategorie : membre associé3.
utilisateurs : alias du membre créé par l'association (collection d'Utilisateurs)4.

<?php

class IndexController extends \Phalcon\Mvc\Controller{
 ...
 public function showCategorieAction($id){
 $categorie=Categorie::findFirst($id);
 echo "<h1>".$categorie->getNom()."</h1>";
 echo "<hr>";
 foreach ($categorie->getUtilisateurs() as $user){
 echo($user->getNom()."
");
 }
 }
}

On obtient une réponse par l'intermédiaire du getter getUtilisateurs(), en référence à l'alias utilisateurs,
sans qu'il ait été implémenté par nos soins, en passant par les méthodes magiques php _get et _set.

Affichage de la réponse obtenue :

2026/02/03 10:20 7/13 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Le getter getUtilisateurs() peut également être utilisé pour filtrer les utilisateurs de la catégorie affichée :

<?php

class IndexController extends \Phalcon\Mvc\Controller{
 ...
 public function showCategorieAction($id){
 $categorie=Categorie::findFirst($id);
 echo "<h1>".$categorie->getNom()."</h1>";
 echo "<hr>";
 //Affichage des utilisateurs dont le nom contient CA
 foreach ($categorie->getUtilisateurs("nom like '%CA%'") as $user){
 echo($user->getNom()."
");
 }
 }
}

-- hasManyToMany (relation n-n)

Base de données Modèle objet

Les utilisateurs disposent de droits :

<?php

class Utilisateur extends \Phalcon\Mvc\Model{

http://slamwiki2.kobject.net/_detail/slam4/php/phalcon/manytomanytables.png?id=slam4%3Aphp%3Aphalcon%3Amodels
http://slamwiki2.kobject.net/_detail/slam4/php/phalcon/manytomanyobject.png?id=slam4%3Aphp%3Aphalcon%3Amodels

Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421455048

http://slamwiki2.kobject.net/ Printed on 2026/02/03 10:20

 ...

 public function initialize()
 {
 $this->belongsTo("idCategorie", "Categorie", "id");
 $this->hasManyToMany("id", "UtilisateurDroit", "idUtilisateur", "idDroit",
"Droit", "id",array("alias"=>"droits"));
 }
 ...
}

Création d'une action dans le contrôleur IndexController pour afficher un utilisateur et ses droits :

<?php

class IndexController extends \Phalcon\Mvc\Controller{
 ...
 public function showUserDroitsAction($id){
 $user=Utilisateur::findFirst($id);
 echo "<h1>".$user->getNom()." : ".$user->getCategorie()->getNom()."</h1>";
 echo "";
 foreach ($user->getDroits() as $droit){
 echo "".$droit->getLibelle()."";
 }
 echo "";
 }
 ...
}

-- Opérations CRUD

-- Lecture/recherche

-- find() et findFirst()

Lister tous les enregistrements d'une table :

2026/02/03 10:20 9/13 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

$utilisateurs = Utilisateur::find();
foreach($utilisateurs as $utilisateur){
 echo $utilisateur->getNom()."
";
}
echo "Nombre d'utilisateurs : ", count($utilisateurs), "\n";

Poser une condition :

// Comptage du nombre d'adultes
$utilisateurs = Utilisateur::find("adulte = 1");
echo "Adultes ", count($utilisateurs), "\n";

Trier :

$utilisateurs = Utilisateur::find(array(
 "adulte = 1",
 "order" => "nom"
));
foreach ($utilisateurs as $utilisateur) {
 echo $utilisateur->nom, "\n";
}

Tri et limite :

$utilisateurs = Robots::find(array(
 "adulte = 1",
 "order" => "nom",
 "limit" => 5
));
foreach ($utilisateurs as $utilisateur) {
 echo $utilisateur->nom, "\n";
}

L'utilisation de la méthode findFirst() permet d'obtenir le premier enregistrement répondant au(x) critère(s) :

// Premier utilisateur ?
$utilisateur = Utilisateur::findFirst();
echo "Le nom du premier utilisateur est ", $utilisateur->getNom(), "\n";

Premier utilisateur répondant à un critère :

$utilisateur = Utilisateur::findFirst("adulte = 1");
echo "Le premier adulte est : ", $utilisateur->getNom(), "\n";

Premier utilisateur répondant à un critère, avec classement par nom :

Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421455048

http://slamwiki2.kobject.net/ Printed on 2026/02/03 10:20

$utilisateur = Utilisateur::findFirst(array("adulte = 1", "order" => "nom"));
echo "Le premier adulte est : ", $utilisateur->getNom(), "\n";

Les méthodes find() et findFirst() permettent de définir des critères à partir d'un tableau associatif :

$utilisateur = Utilisateur::findFirst(array(
 "adulte = 1",
 "order" => "nom DESC",
 "limit" => 30
));

$utilisateurs = Utilisateur::find(array(
 "conditions" => "adulte = ?1",
 "bind" => array(1 => 1)
));

Il est également possible de créer des requêtes de façon orientée objet :

$utilisateurs = Utilisateur::query()
 ->where("adulte = :value:")
 ->andWhere("nom like 'C%'")
 ->bind(array("value" => 1))
 ->orderBy("nom")
 ->execute();

-- PHQL

PHQL : Phalcon Query Language, SQL orienté objet, offre également la possibilité d'interroger la base de
données :

Requête simple :

 public function allUsersAction(){
 $query = $this->modelsManager->createQuery("SELECT * FROM Utilisateur);
 $utilisateurs = $query->execute();
 foreach ($utilisateurs as $utilisateur)
 echo $utilisateur->getNom()."
";
 }

Requête avec paramètres :

 public function adultesAction(){
 $query = $this->modelsManager->createQuery("SELECT * FROM Utilisateur WHERE
adulte = :value:");
 $utilisateurs = $query->execute(array(
 'value' => true

http://docs.phalconphp.com/en/latest/reference/phql.html

2026/02/03 10:20 11/13 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

));
 foreach ($utilisateurs as $utilisateur)
 echo $utilisateur->getNom()."
";
 }

PHSQL retourne dans les deux cas précédents des collections d'objets de type Utilisateur.

Requête partielle :

 public function allUsersAction(){
 $query = $this->modelsManager->createQuery("SELECT u.nom, u.prenom FROM
Utilisateur as u");
 $rs = $query->execute();
 foreach ($rs as $utilisateur)
 echo $utilisateur->nom."
";
 }

PHSQL retourne dans ce cas un recordSet constitué d'objets génériques, et non une collection d'objet de type
Utilisateur.

Requête partielle avec Jointure : Utilisateurs et catégorie

 public function allUsersAction(){
 $query = $this->modelsManager->createQuery("SELECT u.nom, u.prenom,c.nom as
categorie FROM Utilisateur u JOIN Categorie c");
 $rs = $query->execute();
 foreach ($rs as $utilisateur)
 echo $utilisateur->nom." ".$utilisateur->categorie."
";
 }

Requête complète avec jointure :

 public function allUsersAction(){
 $query = $this->modelsManager->createQuery("SELECT u.* FROM Utilisateur u
JOIN Categorie c");
 $utilisateurs = $query->execute();
 foreach ($utilisateurs as $utilisateur)
 echo $utilisateur->getNom()."
".$utilisateur->getCategorie()->getNom()."
";
 }

-- Ajout/mise à jour

La méthode Phalcon\Mvc\Model::save() permet d'ajouter, ou de modifier un enregistrement, s'il existe déjà dans
la base de données (la valeur de la clé primaire détermine cette existence).

 public function addUserAction(){
 $user = new Utilisateur();

Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421455048

http://slamwiki2.kobject.net/ Printed on 2026/02/03 10:20

 $user->setNom("SMITH");
 $user->setPrenom("John");
 $user->setIdcategorie(1);
 $user->setAge(30);
 $user->setAdulte(1);
 if ($user->save() == false) {
 echo "Problème d'enregistrement \n";
 foreach ($user->getMessages() as $message) {
 echo $message, "\n";
 }
 } else {
 echo "Utilisateur ajouté";
 }
 }

Mise à jour par passage d'un tableau associatif à la méthode save() :

$droit= new Droit();
$droit ->save(array(
 "libelle" => "Donner des droits",
 "admin" => 1
));

Mise à jour à partir du post d'un formulaire :

$droit= new Droit();
$droit ->save($_POST);

Sans précaution, ce type d'affectation globale peut permettre d'affecter n'importe qu'elle valeur aux colonnes
de la table concernée (). Il ne faut donc l'utiliser que si on autorise la modification de chaque colonne du
modèle, y compris si les colonnes concernées ne sont pas présentes dans le formulaire validé.

Il est possible de préciser en second paramètre les colonnes (libelle et admin) à affecter :

$droit= new Droit();
$droit->save($_POST, array('libelle', 'admin'));

Ou de faire clairement la distinction entre l'ajout (create()) et la mise à jour (update()) :

$droit = new Droit();
$droit->setNom("Donner des droits");
$droit->setAdmin(1);

//L'enregistrement doit être créé
if ($droit->create() == false) {
 echo "Impossible d'ajouter ce droit : \n";

2026/02/03 10:20 13/13 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 foreach ($droit->getMessages() as $message) {
 echo $message, "\n";
 }
} else {
 echo "Un nouveau droit a été créé !";
}

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421455048

Last update: 2019/08/31 14:41

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421455048

	Modèles
	-- Création de models
	-- Mappage Objet <=> Relationnel
	-- Mappage nom de table/classe
	-- Mappage des noms de champs/membres

	-- Relations
	--belongsTo (relation n-1) & hasMany (relation 1-n)
	-- belongsTo
	-- hasMany

	-- hasManyToMany (relation n-n)

	-- Opérations CRUD
	-- Lecture/recherche
	-- find() et findFirst()
	-- PHQL

	-- Ajout/mise à jour

