2026/02/07 20:38 1/14 Modeles

Modeles

Un modele est une classe métier, représentant une partie des données d'une application. Dans la plupart des
cas, un modele est associé a une table de la base de données.

Phalcon\Mvc\Model est la classe de base des models d'une application. Cette classe met a disposition des
fonctionnalités CRUD, offre des possibilités de recherche avancées, et permet de gérer les relations entre
models, le tout sans avoir besoin d'utiliser SQL

Phalcon implémente ActiveRecord pour sa partie ORM, il utilise donc I'héritage sur les Models, par opposition a
certains ORM qui implémentent DataMapper (Doctrine 2) et permettent de travailler avec des models plus
indépendants de la couche technique liée a la persistance (POPO).

-- Création de models

<?php

class Utilisateur extends \Phalcon\Mvc\Model

{
}

<?php
class Utilisateur extends \Phalcon\Mvc\Model{

/**

*

* @var string
*/
protected $prenom;

/**
*
* @var string
*/

protected $nom;

/**
* Method to set the value of field prenom
*
* @param string $prenom
* @return $this
*/
public function setPrenom($prenom)
{

$this->prenom = $prenom;

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://docs.phalconphp.com/en/latest/api/Phalcon_Mvc_Model.html
http://en.wikipedia.org/wiki/Data_mapper_pattern

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

return $this;

}
/**

/**

* Method to set the value of field nom
*

* @param string $nom

* @return $this

*/

public function setNom($nom)

{

$this->nom = $nom;

return $this;

}

/**

* Returns the value of field prenom
*

* @return string

*/
public function getPrenom()
{
return $this->prenom;
}
/**

* Returns the value of field nom
*

* @return string

*/
public function getNom()
{

return $this->nom;

}

-- Mappage Objet <=> Relationnel

Par défaut, Phalcon effectue un mappage entre classes et tables de la base de données de la facon suivante :

e Table & Classe du méme nom
¢ Enregistrement & instance de classe (objet métier)
e Colonne (champ) & membre de données du méme nom

http://slamwiki2.kobject.net/ Printed on 2026/02/07 20:38

2026/02/07 20:38

3/14

Modeles

Base de données (Table)

Modéele objet (Classe)

WHilisateur

—| utilisateur ¥
id INT{12)

“prarom
-
-dalelnscriphion
-age

Sl

~adulte
dCategone

prenom VARCHAR(50)
datelnscription DATE
age INT(11)

nom VARCHAR(50)
adulte TINYINT (1)

 idCategorie INT(11)
>

+inaticlize|)

+set Prenomi |
+zethd()

+sal Daterseription)
+set Age|)

+et Mo |

+sef Acdulte|)
+salldeategona)
+get Prenam| |
+gethd|)

+aet Dateinscription| |
spetage()

+get Mo)

+etAdulhe (|
+petidecategone (|

-- Mappage nom de table/classe

Si le nom de la table de la base de données ne correspond pas au nom de la classe, il est possible de surdéfinir

la méthode getSource :

class Users extends \Phalcon\Mvc\Model{

//Retourne le nom de la table correspondant a la classe

public function getSource(){
return "Utilisateur";

}

-- Mappage des noms

de champs/membres

De méme, si les noms de champ de la table ne correspondent pas aux membres de données de la classe :

<?php

class Utilisateur extends \Phalcon\Mvc\Model

{
protected $code;

protected $name;

public function columnMap()

{

//Les clés correspondent aux noms dans la table

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

//Les valeurs aux noms dans l'application
return array(

'id' => 'code',

‘nom' => 'name'’

W

-- Relations

Avec Phalcon, les relations peuvent étre définies grace a la méthode initialize() du modeéle. Les méthodes
belongsTo(), hasOne(), hasMany() and hasManyToMany() definissent des relations entre 1 ou plusieurs
membres du modele courant et des membres d'un autre modéle. Chacune de ces méthodes requiert 3
paramétres : le membre local, le modéle cible, les membres cibles.

Méthode Description

hasMany Defines a 1-n relationship
hasOne Defines a 1-1 relationship
belongsTo Defines a n-1 relationship
hasManyToMany |Defines a n-n relationship

--belongsTo (relation n-1) & hasMany (relation 1-n)

Exemple :
Base de données (Table) Modéele objet (Classe)
Uilisateur
-prenam
4
-datelnscription
_| utilisateur v -age
-norm
id INT(12) —adulte Categorie
prenom VARCHAR(50) pCciadons -id
. tiniticize() -nom
dateln scription DATE +setPrenom) +setid()
age INT(11) sl . 0.° Apparienic__categorie _|*setNom()
+sat Dateinscription() m 1 |+getld()
nom VARCH AR(50) =setAgel) utilisateurs
:l categorie ¥ —‘L)|NIJ'I';I:' ~EELEL
adulte TINYINT (1) 1 N .
oa — idINT{li) +sat Adulte()
idCategorie INT(11) p=——""" +setideategoie|)
> nom VARCHAR(30) +oet Prenomi)
> +getid()
+get Dateinscription)
+getagel
=gt Nam(}
+getAdulte()

+retideategorns ()

-- belongsTo

Chaque utilisateur appartient a une catégorie :

class Utilisateur extends \Phalcon\Mvc\Model{

http://slamwiki2.kobject.net/ Printed on 2026/02/07 20:38

2026/02/07 20:38 5/14 Modeles

/**
B3

* @var integer
*/
protected $idCategorie;

public function initialize()

{ .

$this->belongsTo("idCategorie", "Categorie", "id");

}

Les paramétres passés a la méthode belongsTo sont :

1. idCategorie : membre local intervenant dans I'association (clé étrangere)
2. Categorie : Classe référencée associée
3. id : membre référencé dans la classe associée

Création d'une action dans le contréleur IndexController pour afficher un utilisateur et sa catégorie :

<?php
class IndexController extends \Phalcon\Mvc\Controller{
public function showUserAction($id){

$user=Utilisateur::findFirst($id);
echo $user->getNom()." : ".$user->getCategorie()->getNom();

Affichage de la réponse obtenue :

E] http:/f127.0..../showUser/16 =+

L 127.0.0.1 /phalcon/index/showlUser/16 »

JOHNSON - Admininstrateurs

utilisateur # | % | Tout surligner Respecter la casse

Phalcon charge I'utilisateur, et I'instance de catégorie correspondant, accessible grace aux méthodes magiques
_setet get

-- hasMany

Chaque catégorie est associée a 1 ou plusieurs utilisateurs :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

class Categorie extends \Phalcon\Mvc\Model{

/**
%
* @var integer
*/

protected $id;

/**

*

* @var string
*/

protected $nom;

public function initialize(){
$this->hasMany("id", "Utilisateur",
"idCategorie",array("alias"=>"utilisateurs"));

}

Les paramétres passés a la méthode hasMany sont :

1. id : membre local intervenant dans I'association (clé primaire)

Utilisateur : Classe associée

idCategorie : membre associé

utilisateurs : alias du membre créé par I'association (collection d'Utilisateurs)

PwnN

<?php
class IndexController extends \Phalcon\Mvc\Controller{

public function showCategorieAction($id){
$categorie=Categorie::findFirst($id);
echo "<hl>".$categorie->getNom()."</h1>";
echo "<hr>";
foreach ($categorie->getUtilisateurs() as $user){
echo($user->getNom()."
");

}
}

On obtient une réponse par I'intermédiaire du getter getUtilisateurs(), en référence a I'alias utilisateurs,
sans qu'il ait été implémenté par nos soins, en passant par les méthodes magiques php _get et _set.

Affichage de la réponse obtenue :

http://slamwiki2.kobject.net/

Printed on 2026/02/07 20:38

2026/02/07 20:38

7/14

Modeles

http//127.0...wCategorie/2 % | +

€

Utilisateurs

127.0.0.1 /phalcon/index/showCategorie/2

WTLALN

~ o N

P ¥ H »

APACHE
ORACLE
HIBEEME
SISCAUX

Le getter getUtilisateurs() peut également étre utilisé pour filtrer les utilisateurs de la catégorie affichée :

<?php

class IndexController extends \Phalcon\Mvc\Controller{

public function showCategorieAction($id){
$categorie=Categorie::findFirst($id);

echo "<hl>".$categorie->getNom()."</h1l>";

echo "<hr>";

//Affichage des utilisateurs dont le nom contient CA
foreach ($categorie->getUtilisateurs("nom like '%CA%'") as $user){

echo($user->getNom()."
");

}

-- hasManyToMany (relation n-n)

Base de données

Modele objet

*-
adulte TINYINT(1)

dCabegone INT(1L)

L

T ubilisateur ¥

[ez
prenom VARCH SRS [uthsateur_deon v ;] dreit v
datelnscrption CATE Fr——— L_./_* IﬂSIl'h'-.l.LNTtG].r .
age MT{11) et SMALLTNT (5] belle :MLH-‘.\I\.._:TU.
nom VARCHAR(S0] admin TINYTWTY 1)

[

i v

Drak
U akr st -
...... e
agrar
rastai|
! it
[T] ——
P "
= Lok
e

Les utilisateurs disposent de droits :

<?php

class Utilisateur extends \Phalcon\Mvc\Model{

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_detail/slam4/php/phalcon/manytomanytables.png?id=slam4%3Aphp%3Aphalcon%3Amodels
http://slamwiki2.kobject.net/_detail/slam4/php/phalcon/manytomanyobject.png?id=slam4%3Aphp%3Aphalcon%3Amodels

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

public function initialize()

{
$this->belongsTo("idCategorie", "Categorie", "id");
$this->hasManyToMany("id", "UtilisateurDroit", "idUtilisateur", "idDroit",
“Droit", "id",array("alias"=>"droits"));

}

Création d'une action dans le contréleur IndexController pour afficher un utilisateur et ses droits :

<?php
class IndexController extends \Phalcon\Mvc\Controller{

public function showUserDroitsAction($id){
$user=Utilisateur::findFirst($id);
echo "<hl>".$user->getNom()." : ".$user->getCategorie()->getNom()."</h1>";
echo "";
foreach ($user->getDroits() as $droit){
echo "".$droit->getLibelle()."</1i>";
}

echo "";

E] http:/f127.0...UserDroits/16 +

€ 127.0.0.1/phalcon/index/showUserDroits/16 B - Google P ¥ A B »

JOHNSON : Admininstrateurs

s Lire
» Ecrire

-- Opérations CRUD

-- Lecture/recherche
-- find() et findFirst()

Lister tous les enregistrements d'une table :

http://slamwiki2.kobject.net/ Printed on 2026/02/07 20:38

2026/02/07 20:38 9/14

Modeles

$utilisateurs = Utilisateur::find();
foreach($utilisateurs as $utilisateur){
echo $utilisateur->getNom()."
";

}

echo "Nombre d'utilisateurs : ", count($utilisateurs), "\n";

Poser une condition :

// Comptage du nombre d'adultes
$utilisateurs = Utilisateur::find("adulte = 1");
echo "Adultes ", count($utilisateurs), "\n";

Trier :

$utilisateurs = Utilisateur::find(array(
"adulte = 1",
"order" => "nom"

));

foreach ($utilisateurs as $utilisateur) {
echo $utilisateur->nom, "\n";

}

Tri et limite :

$utilisateurs = Robots::find(array(
"adulte = 1",
"order" => "nom",
"limit" => 5
));
foreach ($utilisateurs as $utilisateur) {
echo $utilisateur->nom, "\n";

}

L'utilisation de la méthode findFirst() permet d'obtenir le premier enregistrement répondant au(x) critére(s) :

// Premier utilisateur ?
$utilisateur = Utilisateur::findFirst();

echo "Le nom du premier utilisateur est ", $utilisateur->getNom(),

Premier utilisateur répondant a un critere :

$utilisateur = Utilisateur::findFirst("adulte = 1");

echo "Le premier adulte est : ", $utilisateur->getNom(), "\n";

Premier utilisateur répondant a un critére, avec classement par nom :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

$utilisateur = Utilisateur::findFirst(array("adulte = 1", "order" => "nom"));
echo "Le premier adulte est : ", $utilisateur->getNom(), "\n";

Les méthodes find() et findFirst() permettent de définir des critéres a partir d'un tableau associatif :

$utilisateur = Utilisateur::findFirst(array/(

"adulte = 1",
"order" => "nom DESC",
"limit" => 30

));

$utilisateurs = Utilisateur::find(array(
"conditions" => "adulte = ?1",
"bind" => array(l => 1)

));

Il est également possible de créer des requétes de facon orientée objet :

$utilisateurs = Utilisateur::query()
->where("adulte = :value:")
->andWhere("nom like 'C%'")
->bind(array("value" => 1))
->orderBy("nom")
->execute();

-- PHQL

PHQL : Phalcon Query Language, SQL orienté objet, offre également la possibilité d'interroger la base de
données :

Requéte simple :

public function allUsersAction(){
$query = $this->modelsManager->createQuery("SELECT * FROM Utilisateur);
$utilisateurs = $query->execute();
foreach ($utilisateurs as $utilisateur)
echo $utilisateur->getNom()."
";

Requéte avec paramétres :

public function adultesAction(){
$query = $this->modelsManager->createQuery("SELECT * FROM Utilisateur WHERE
adulte = :value:");
$utilisateurs = $query->execute(array(
'value' => true

http://slamwiki2.kobject.net/ Printed on 2026/02/07 20:38

http://docs.phalconphp.com/en/latest/reference/phql.html

2026/02/07 20:38 11/14 Modeles

));
foreach ($utilisateurs as $utilisateur)
echo $utilisateur->getNom()."
";

}
PHSQL retourne dans les deux cas précédents des collections d'objets de type Utilisateur.

Requéte partielle :

public function allUsersAction(){

$query = $this->modelsManager->createQuery("SELECT u.nom, u.prenom FROM
Utilisateur as u");

$rs = $query->execute();
foreach ($rs as $utilisateur)
echo $utilisateur->nom."
";

PHSQL retourne dans ce cas un recordSet constitué d'objets génériques, et non une collection d'objet de type
Utilisateur.

Requéte partielle avec Jointure : Utilisateurs et catégorie

public function allUsersAction(){
$query = $this->modelsManager->createQuery("SELECT u.nom, u.prenom,c.nom as
categorie FROM Utilisateur u JOIN Categorie c");
$rs = $query->execute();
foreach ($rs as $utilisateur)
echo $utilisateur->nom." ".$utilisateur->categorie."
";

Requéte compléte avec jointure :

public function allUsersAction(){
$query = $this->modelsManager->createQuery("SELECT u.* FROM Utilisateur u
JOIN Categorie c");
$utilisateurs = $query->execute();
foreach ($utilisateurs as $utilisateur)
echo $utilisateur->getNom()."
".$utilisateur->getCategorie()->getNom()."
";

}
-- Ajout/mise a jour

La méthode Phalcon\Mvc\Model::save() permet d'ajouter, ou de modifier un enregistrement, s'il existe déja dans
la base de données (la valeur de la clé primaire détermine cette existence).

public function addUserAction(){
suser = new Utilisateur();

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

$user->setNom("SMITH") ;
$user->setPrenom("John");
$user->setIdcategorie(1l);
$user->setAge(30);
$user->setAdulte(l);
if ($user->save() == false) {
echo "Probléeme d'enregistrement \n";
foreach ($user->getMessages() as $message) {
echo $message, "\n";
}
} else {
echo "Utilisateur ajouté";

}

Mise a jour par passage d'un tableau associatif a la méthode save() :

$droit= new Droit();

$droit ->save(array/(
"libelle" => "Donner des droits",
"admin" => 1

));

Mise a jour a partir du post d'un formulaire :

$droit= new Droit();
$droit ->save($ POST);

Sans précaution, ce type d'affectation globale peut permettre d'affecter n'importe qu'elle valeur aux colonnes
de la table concernée (). Il ne faut donc I'utiliser que si on autorise la modification de chaque colonne du
modele, y compris si les colonnes concernées ne sont pas présentes dans le formulaire validé.

Il est possible de préciser en second parametre les colonnes (libelle et admin) a affecter :

$droit= new Droit();
$droit->save($ POST, array('libelle', 'admin'));

Ou de faire clairement la distinction entre I'ajout (create()) et la mise a jour (update()) :

$droit = new Droit();
$droit->setNom("Donner des droits");
$droit->setAdmin(1);

//L'enregistrement doit étre créé
if ($droit->create() == false) {
echo "Impossible d'ajouter ce droit : \n";

http://slamwiki2.kobject.net/ Printed on 2026/02/07 20:38

2026/02/07 20:38 13/14 Modeles

foreach ($droit->getMessages() as $message) {
echo $message, "\n";
}
} else {
echo "Un nouveau droit a été créé !";

}

Mise a jour d'un objet et de I'objet associé par un belongsTo :

public function addCategorieUserAction(){
$categorie=new Categorie();
$categorie->setNom("Auteurs");

$user=new Utilisateur();
$user->setNom("SMITH");
$user->setPrenom("ROBERT") ;
$user->setAge(30);
$user->setAdulte(l);

$user->categorie=$categorie;
if ($user->save()==false){
echo "Probleme d'enregistrement \n";
foreach ($user->getMessages() as $message) {
echo $message, "\n";
}
}else{
echo "Catégorie & utilisateur sauvegardés";

}

-- Suppression d'enregistrements

La méthode Phalcon\Mvc\Model::delete() permet de supprimer un enregistrement :

<?php

$user = Utilisateur::findFirst(11);
if ($user != false) {
if ($user->delete() == false) {
echo "Impossible de supprimer l'utilisateur : \n";
foreach ($user->getMessages() as $message) {
echo $message, "\n";
}
} else {
echo "L'utilisateur a été supprimé";

}

Il est également possible de supprimer plusieurs enregistrement en parcourant un résultat avec un foreach :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

<?php

foreach (Utilisateur::find("ville='Caen'") as $user) {

if ($user->delete() == false) {
echo "Impossible de supprimer l'utilisateur : \n";
foreach ($user->getMessages() as $message) {

echo $message, "\n";

}

} else {
echo "L'utilisateur a été supprimé";

}

-- Suppléments

-- Events

Phalcon permet de gérer/controler la mise a jour des objets via des événements, contrélable de préférence par
mise en place d'un eventManager.

-- Behaviors

Phalcon met a disposition un ensemble d'outils permettant d'associer un comportement aux objets : voir
behaviors :

o timeStempable : pour mémoriser I'heure de mise a jour/ajout d'objets
o softDelete : pour marquer des enregistrements comme supprimés

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

Last update: 2019/08/31 14:41

http://slamwiki2.kobject.net/ Printed on 2026/02/07 20:38

http://docs.phalconphp.com/en/latest/reference/models.html#events-and-events-manager
http://docs.phalconphp.com/en/latest/reference/models.html#behaviors
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1423556723

	Modèles
	-- Création de models
	-- Mappage Objet <=> Relationnel
	-- Mappage nom de table/classe
	-- Mappage des noms de champs/membres

	-- Relations
	--belongsTo (relation n-1) & hasMany (relation 1-n)
	-- belongsTo
	-- hasMany

	-- hasManyToMany (relation n-n)

	-- Opérations CRUD
	-- Lecture/recherche
	-- find() et findFirst()
	-- PHQL

	-- Ajout/mise à jour
	-- Suppression d'enregistrements

	-- Suppléments
	-- Events
	-- Behaviors

