2026/02/02 10:30 1/9 Vues

Vues

les classes Phalcon\Mvc\View et Phalcon\Mvc\View\Simple permettent la manipulation des vues dans le cadre du
design pattern MVC.,

-- Intégration des vues avec les controleurs

Phalcon passe automatiquement 'exécution a un composant de type vue dés qu'un contréleur a terminé son
chargement. La vue a charger est recherchée dans le dossier views, dans un sous-dossier du méme nom que le
dernier contrbleur invoqué, le fichier de vue portant le nom de la derniére action exécutée.

Pour prendre un exemple, si une requéte est faite vers I'url http://127.0.0.1/blog/posts/show/301, Phalcon
va parser I'url de la fagon suivante :

Root de I'application |blog
Controller posts
Action show
Parameétre 301

Le dispatcher recherche “PostsController” et son action “showAction”.

Exemple de contréleur :

<?php
class PostsController extends \Phalcon\Mvc\Controller{
public function indexAction(){

}

public function showAction($postId){
// Passage du parametre $postId (301 dans 1l'exemple) a la vue
$this->view->setVar("postId", $postId);

}

La méthode setVar permet de créer des variables a la demande de fagon a ce qu'elles puissent étre utilisées
dans la vue. L'exemple montre comment passer des paramétres ($postld) a la vue.

-- Scan hiérarchique

Le composant par défaut pour les vues (Phalcon\Mvc\View) gére I'affichage a partir d'une hiérarchie de fichiers.
Cette hiérarchie permet d'utiliser des zones de layout (fréqguemment utilisées dans les vues) a condition que les
templates soient présents dans les dossiers correspondant au contréleur et a I'action.

Phalcon\Mvc\View utilise PHP par défaut comme moteur de template, a condition que les vues aient
I'extension .phtml. Si le dossier des vues est app/views (comme défini dans la configuration) le composant view
recherchera automatiquement les 3 fichiers suivants :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://api.phalconphp.com/class/Phalcon/Mvc/View.html
https://api.phalconphp.com/class/Phalcon/Mvc/View/Simple.html

Last update: 2019/08/31 14:21 slamé4:php:phalcon:views http://slamwiki2.kobject.net/slam4/php/phalcon/views

Role Fichier Description
Main Layout app/views/index.phtml ﬁﬁmhepgurchaqueconUokuretchaqueacUonde
application
Vue relative au contréleur, visible pour I'exécution de chacune
Controller des action du contréleur “posts”. Tout le code implémenté

app/views/layouts/posts.phtml

Layout dans ce layout sera utilisé pour toutes les actions du
contréleur
Action View app/views/posts/show.phtm| Vue re!atwg a l'action, visible uniquement si I'action “show
est exécutée.
<!-- app/views/index.phtml -->
<html>
<head>
<title>Example</title>
</head>
<body>
<hl>main layout!</hl>
<?php echo $this->getContent() ?>
</body>
</html>

<!-- app/views/layouts/posts.phtml -->
<h2>"posts" controller layout!</h2>

<?php echo $this->getContent() ?>

<!-- app/views/posts/show.phtml -->
<h3>show view!</h3>

<p>Parametre passé : <?php echo $postId ?></p>

Résultat :

http://slamwiki2.kobject.net/ Printed on 2026/02/02 10:30

2026/02/02 10:30

3/9

Vues

[5] Phalcon PHP Framewc x
<« =l 127.0.0.1/myProject/posts/show/301 ‘T:'j-.“ @

(]

Main layout!

"posts" controller layout!
show view!

Paramétre passé : 301

<!-- app/views/index.phtml -->
<!DOCTYPE html>
<html>
<head>
<title>Phalcon PHP Framework Layout example</title>
</head>
<body>

<h1l>Main layout!</hl>
<!-- app/views/layouts/posts.phtml -->

<h2>"posts" controller layout!</h2>
<!-- app/views/posts/show.phtml -->
<h3>show view!</h3>

<p>Parametre passé : 301</p> </body>
</html>

-- Utilisation de templates

Les templates permettent de factoriser et de partager une partie de I'affichage.

Exemple : Utilisation d'un template pour affichage d'une action

class PostsController extends \Phalcon\Mvc\Controller{
public function initialize(){
$this->view->setTemplateAfter('common');

}

public function lastAction(){
$this->flash->notice("Derniers posts");
}
}

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slamé4:php:phalcon:views http://slamwiki2.kobject.net/slam4/php/phalcon/views

La méthode setTemplateAfter de la classe view applique le template apres le controller layout.

Le template common :

<!-- app/views/layouts/common.phtml -->
<ul class="menu">
Home</1i>
Articles</1i>
Contact</1i>

<div class="content"><?php echo $this->getContent() ?></div>

La vue correspondant a I'action last :

<!-- app/views/posts/show.phtml -->

<h3>1last view!</h3>

-- Controle hiérarchique du niveau d'affichage

La méthode setRenderLevel permet de définir le niveau de présentation

$this->view->setRenderLevel(View: :LEVEL NO RENDER);

Il est également possible de désactiver l'affichage,

ponctuellement, dans un controleur :

$this->view->disablelLevel(View: :LEVEL MAIN LAYOUT);

ou de maniére générale dans le fichier bootstrap :

<?php

use Phalcon\Mvc\View;

$di->set('view', function()({
$view = new View();
//Disable several levels

$view->disablelLevel(array(
View::LEVEL LAYOUT => true,

http://slamwiki2.kobject.net/ Printed on 2026/02/02 10:30

2026/02/02 10:30 5/9 Vues

View::LEVEL MAIN LAYOUT => true
));

return $view;

}, true);
- Choix spécifique de vues

Il est également possible de déterminer précisément | a vue a afficher avec la méthode pick :
$this->view->pick("products/search");

Ou de désactiver I'affichage de vues (s'il s'agit d'une réponse ajax ou d'une redirection :

$this->view->disable();

-- Scan Simple

L'alternative au scan hierarchique est offert par la classe Phalcon\Mvc\View\Simple.
Ce composant plus classique permet de choisir précisément la vue a afficher.

Le composant par défaut doit étre remplacé dans le fichier bootstrap lors de l'initialisation du service container
$di:

<?php

$di->set('view', function() {
$view = new Phalcon\Mvc\View\Simple();
$view->setViewsDir('../app/views/');
return $view;

}, true);

Démarrage de l'application et désactivation du rendering automatique :

<?php
try {
$application = new Phalcon\Mvc\Application($di);

$application->useImplicitView(false);

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://docs.phalconphp.com/en/latest/api/Phalcon_Mvc_View_Simple.html

Last update: 2019/08/31 14:21 slamé4:php:phalcon:views http://slamwiki2.kobject.net/slam4/php/phalcon/views

echo $application->handle()->getContent();
} catch (\Exception $e) {

echo $e->getMessage();

}

Exemples d'affichage de vues :

<?php
class PostsController extends \Phalcon\Mvc\Controller{
public function indexAction(){
//Render 'views-dir/index.phtml'

echo $this->view->render('index');

//Render 'views-dir/posts/show.phtml'
echo $this->view->render('posts/show');

//Render 'views-dir/index.phtml' passing variables
echo $this->view->render('index', array('posts' => Posts::find()));

//Render 'views-dir/posts/show.phtml' passing variables
echo $this->view->render('posts/show', array('posts' => Posts::find()));

-- Inclusion de templates partiels

<div class="top"><?php $this->partial("shared/ad banner") ?></div>

<div class="content">
<h1>Robots</hl>

<p>Check out our specials for robots:</p>
</div>

<div class="footer"><?php $this->partial("shared/footer") ?></div>

Il est également possible de passer des variables a la vue partielle :

<?php $this->partial("shared/ad banner", array('id' => $site->id, 'size' => 'big'))
?>

http://slamwiki2.kobject.net/ Printed on 2026/02/02 10:30

2026/02/02 10:30 7/9

Vues

-- Passage de variables du contréleur a la vue

-- Variable simple

public function showAction()

{
//Passage du nombre de posts a la vue
$this->view->setVar("postsCount", 5);

echo $postCount;

-- Passage de plusieurs variables

$this->view->setVars(array(

'title' => $post->title,

'content' => $post->content
N

echo $title;
echo $content;

-- Mise en cache

voir http://docs.phalconphp.com/en/latest/reference/views.html#caching-view-fragments

-- Evénements sur les vues

Les vues ont la possibilité d'envoyer des évenements a I'eventsManager s'il est présent.

Nom Evénement Interruptible ?
beforeRender avant interprétation Yes
beforeRenderView |Avant interprétation d'une vue existante |Oui
afterRenderView |Apres interprétation d'une vue existante |[Non
afterRender Aprés interprétation Non
notFoundView Déclenché si la vue est inexistante Non

Exemple de configuration avec eventsManager :

$di->set('view', function() {

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://docs.phalconphp.com/en/latest/reference/views.html#caching-view-fragments
http://docs.phalconphp.com/en/latest/reference/events.html

Last update: 2019/08/31 14:21 slamé4:php:phalcon:views http://slamwiki2.kobject.net/slam4/php/phalcon/views

//création de 1'eventsManager
$eventsManager = new Phalcon\Events\Manager();

//Association d'un listener pour le type "view"
$eventsManager->attach("view", function($event, $view) {

echo $event->getType(), ' - ', $view->getActiveRenderPath(), PHP EOL;
1)

$view = new \Phalcon\Mvc\View();
$view->setViewsDir("../app/views/");

//Associe 1'eventsManager au composant $view
$view->setEventsManager ($eventsManager) ;

return $view;

}, true);

L'exemple suivant montre comment créé un plugin permettant de nettoyer/réparer le code HTML produit avec
tidy :

<?php
class TidyPlugin{

public function afterRender($event, $view){

$tidyConfig array (
'clean' => true,
"output-xhtml' => true,
'show-body-only' => true,
‘'wrap' => 0,

);

$tidy = tidy parse string($view->getContent(), $tidyConfig, 'UTF8');
$tidy->cleanRepair();

$view->setContent((string) $tidy);

}

//Associe le plugin en tant que listener sur 1'événement afterRender
$eventsManager->attach("view:afterRender", new TidyPlugin());

La suite : View Helpers

http://slamwiki2.kobject.net/ Printed on 2026/02/02 10:30

http://www.php.net/manual/en/book.tidy.php
http://slamwiki2.kobject.net/slam4/php/phalcon/viewhelpers

2026/02/02 10:30

9/9

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/phalcon/views

Last update: 2019/08/31 14:21

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/phalcon/views

	Vues
	-- Intégration des vues avec les contrôleurs
	-- Scan hiérarchique
	-- Utilisation de templates
	-- Contrôle hiérarchique du niveau d'affichage
	- Choix spécifique de vues

	-- Scan Simple
	-- Inclusion de templates partiels
	-- Passage de variables du contrôleur à la vue
	-- Variable simple
	-- Passage de plusieurs variables
	-- Mise en cache

	-- Evènements sur les vues

