
2026/02/02 10:30 1/9 Vues

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Vues

les classes Phalcon\Mvc\View et Phalcon\Mvc\View\Simple permettent la manipulation des vues dans le cadre du
design pattern MVC.

-- Intégration des vues avec les contrôleurs

Phalcon passe automatiquement l'exécution à un composant de type vue dès qu'un contrôleur à terminé son
chargement. La vue à charger est recherchée dans le dossier views, dans un sous-dossier du même nom que le
dernier contrôleur invoqué, le fichier de vue portant le nom de la dernière action exécutée.
Pour prendre un exemple, si une requête est faite vers l'url http://127.0.0.1/blog/posts/show/301, Phalcon
va parser l'url de la façon suivante :

Root de l'application blog
Controller posts
Action show
Paramètre 301

Le dispatcher recherche “PostsController” et son action “showAction”.

Exemple de contrôleur :

<?php

class PostsController extends \Phalcon\Mvc\Controller{

 public function indexAction(){

 }

 public function showAction($postId){
 // Passage du paramètre $postId (301 dans l'exemple) à la vue
 $this->view->setVar("postId", $postId);
 }

}

La méthode setVar permet de créer des variables à la demande de façon à ce qu'elles puissent être utilisées
dans la vue. L'exemple montre comment passer des paramètres ($postId) à la vue.

-- Scan hiérarchique

Le composant par défaut pour les vues (Phalcon\Mvc\View) gère l'affichage à partir d'une hiérarchie de fichiers.
Cette hiérarchie permet d'utiliser des zones de layout (fréquemment utilisées dans les vues) à condition que les
templates soient présents dans les dossiers correspondant au contrôleur et à l'action.

Phalcon\Mvc\View utilise PHP par défaut comme moteur de template, à condition que les vues aient
l'extension .phtml. Si le dossier des vues est app/views (comme défini dans la configuration) le composant view
recherchera automatiquement les 3 fichiers suivants :

https://api.phalconphp.com/class/Phalcon/Mvc/View.html
https://api.phalconphp.com/class/Phalcon/Mvc/View/Simple.html

Last update: 2019/08/31 14:21 slam4:php:phalcon:views http://slamwiki2.kobject.net/slam4/php/phalcon/views

http://slamwiki2.kobject.net/ Printed on 2026/02/02 10:30

Rôle Fichier Description

Main Layout app/views/index.phtml Affiché pour chaque contrôleur et chaque action de
l'application

Controller
Layout app/views/layouts/posts.phtml

Vue relative au contrôleur, visible pour l'exécution de chacune
des action du contrôleur “posts”. Tout le code implémenté
dans ce layout sera utilisé pour toutes les actions du
contrôleur

Action View app/views/posts/show.phtml Vue relative à l'action, visible uniquement si l'action “show”
est exécutée.

<!-- app/views/index.phtml -->
<html>
 <head>
 <title>Example</title>
 </head>
 <body>

 <h1>main layout!</h1>

 <?php echo $this->getContent() ?>

 </body>
</html>

<!-- app/views/layouts/posts.phtml -->

<h2>"posts" controller layout!</h2>

<?php echo $this->getContent() ?>

<!-- app/views/posts/show.phtml -->

<h3>show view!</h3>

<p>Paramètre passé : <?php echo $postId ?></p>

Résultat :

2026/02/02 10:30 3/9 Vues

SlamWiki 2.1 - http://slamwiki2.kobject.net/

<!-- app/views/index.phtml -->
<!DOCTYPE html>
<html>
 <head>
 <title>Phalcon PHP Framework Layout example</title>
 </head>
 <body>
 <h1>Main layout!</h1>
<!-- app/views/layouts/posts.phtml -->

<h2>"posts" controller layout!</h2>

<!-- app/views/posts/show.phtml -->

<h3>show view!</h3>

<p>Paramètre passé : 301</p> </body>
</html>

-- Utilisation de templates

Les templates permettent de factoriser et de partager une partie de l'affichage.

Exemple : Utilisation d'un template pour affichage d'une action

class PostsController extends \Phalcon\Mvc\Controller{
 public function initialize(){
 $this->view->setTemplateAfter('common');
 }
...
 public function lastAction(){
 $this->flash->notice("Derniers posts");
 }
}

Last update: 2019/08/31 14:21 slam4:php:phalcon:views http://slamwiki2.kobject.net/slam4/php/phalcon/views

http://slamwiki2.kobject.net/ Printed on 2026/02/02 10:30

La méthode setTemplateAfter de la classe view applique le template après le controller layout.

Le template common :

<!-- app/views/layouts/common.phtml -->

<ul class="menu">
 Home
 Articles
 Contact

<div class="content"><?php echo $this->getContent() ?></div>

La vue correspondant à l'action last :

<!-- app/views/posts/show.phtml -->

<h3>last view!</h3>

-- Contrôle hiérarchique du niveau d'affichage

La méthode setRenderLevel permet de définir le niveau de présentation

 $this->view->setRenderLevel(View::LEVEL_NO_RENDER);

Il est également possible de désactiver l'affichage,

ponctuellement, dans un contrôleur :

 $this->view->disableLevel(View::LEVEL_MAIN_LAYOUT);

ou de manière générale dans le fichier bootstrap :

<?php

use Phalcon\Mvc\View;

$di->set('view', function(){

 $view = new View();

 //Disable several levels
 $view->disableLevel(array(
 View::LEVEL_LAYOUT => true,

2026/02/02 10:30 5/9 Vues

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 View::LEVEL_MAIN_LAYOUT => true
));

 return $view;

}, true);

- Choix spécifique de vues

Il est également possible de déterminer précisément l a vue à afficher avec la méthode pick :

 $this->view->pick("products/search");

Ou de désactiver l'affichage de vues (s'il s'agit d'une réponse ajax ou d'une redirection :

 $this->view->disable();

-- Scan Simple

L'alternative au scan hierarchique est offert par la classe Phalcon\Mvc\View\Simple.

Ce composant plus classique permet de choisir précisément la vue à afficher.

Le composant par défaut doit être remplacé dans le fichier bootstrap lors de l'initialisation du service container
$di :

<?php

$di->set('view', function() {

 $view = new Phalcon\Mvc\View\Simple();

 $view->setViewsDir('../app/views/');

 return $view;

}, true);

Démarrage de l'application et désactivation du rendering automatique :

<?php

try {

 $application = new Phalcon\Mvc\Application($di);

 $application->useImplicitView(false);

http://docs.phalconphp.com/en/latest/api/Phalcon_Mvc_View_Simple.html

Last update: 2019/08/31 14:21 slam4:php:phalcon:views http://slamwiki2.kobject.net/slam4/php/phalcon/views

http://slamwiki2.kobject.net/ Printed on 2026/02/02 10:30

 echo $application->handle()->getContent();

} catch (\Exception $e) {
 echo $e->getMessage();
}

Exemples d'affichage de vues :

<?php

class PostsController extends \Phalcon\Mvc\Controller{

 public function indexAction(){
 //Render 'views-dir/index.phtml'
 echo $this->view->render('index');

 //Render 'views-dir/posts/show.phtml'
 echo $this->view->render('posts/show');

 //Render 'views-dir/index.phtml' passing variables
 echo $this->view->render('index', array('posts' => Posts::find()));

 //Render 'views-dir/posts/show.phtml' passing variables
 echo $this->view->render('posts/show', array('posts' => Posts::find()));
 }

}

-- Inclusion de templates partiels

<div class="top"><?php $this->partial("shared/ad_banner") ?></div>

<div class="content">
 <h1>Robots</h1>

 <p>Check out our specials for robots:</p>
 ...
</div>

<div class="footer"><?php $this->partial("shared/footer") ?></div>

Il est également possible de passer des variables à la vue partielle :

<?php $this->partial("shared/ad_banner", array('id' => $site->id, 'size' => 'big'))
?>

2026/02/02 10:30 7/9 Vues

SlamWiki 2.1 - http://slamwiki2.kobject.net/

-- Passage de variables du contrôleur à la vue

-- Variable simple

 public function showAction()
 {
 //Passage du nombre de posts à la vue
 $this->view->setVar("postsCount", 5);

echo $postCount;

-- Passage de plusieurs variables

 $this->view->setVars(array(
 'title' => $post->title,
 'content' => $post->content
));

echo $title;
echo $content;

-- Mise en cache

voir http://docs.phalconphp.com/en/latest/reference/views.html#caching-view-fragments

-- Evènements sur les vues

Les vues ont la possibilité d'envoyer des évènements à l'eventsManager s'il est présent.

Nom Evènement Interruptible ?
beforeRender avant interprétation Yes
beforeRenderView Avant interprétation d'une vue existante Oui
afterRenderView Après interprétation d'une vue existante Non
afterRender Après interprétation Non
notFoundView Déclenché si la vue est inexistante Non

Exemple de configuration avec eventsManager :

$di->set('view', function() {

http://docs.phalconphp.com/en/latest/reference/views.html#caching-view-fragments
http://docs.phalconphp.com/en/latest/reference/events.html

Last update: 2019/08/31 14:21 slam4:php:phalcon:views http://slamwiki2.kobject.net/slam4/php/phalcon/views

http://slamwiki2.kobject.net/ Printed on 2026/02/02 10:30

 //création de l'eventsManager
 $eventsManager = new Phalcon\Events\Manager();

 //Association d'un listener pour le type "view"
 $eventsManager->attach("view", function($event, $view) {
 echo $event->getType(), ' - ', $view->getActiveRenderPath(), PHP_EOL;
 });

 $view = new \Phalcon\Mvc\View();
 $view->setViewsDir("../app/views/");

 //Associe l'eventsManager au composant $view
 $view->setEventsManager($eventsManager);

 return $view;

}, true);

L'exemple suivant montre comment créé un plugin permettant de nettoyer/réparer le code HTML produit avec
tidy :

<?php

class TidyPlugin{

 public function afterRender($event, $view){

 $tidyConfig = array(
 'clean' => true,
 'output-xhtml' => true,
 'show-body-only' => true,
 'wrap' => 0,
);

 $tidy = tidy_parse_string($view->getContent(), $tidyConfig, 'UTF8');
 $tidy->cleanRepair();

 $view->setContent((string) $tidy);
 }

}

//Associe le plugin en tant que listener sur l’événement afterRender
$eventsManager->attach("view:afterRender", new TidyPlugin());

La suite : View Helpers

http://www.php.net/manual/en/book.tidy.php
http://slamwiki2.kobject.net/slam4/php/phalcon/viewhelpers

2026/02/02 10:30 9/9 Vues

SlamWiki 2.1 - http://slamwiki2.kobject.net/

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/phalcon/views

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/phalcon/views

	Vues
	-- Intégration des vues avec les contrôleurs
	-- Scan hiérarchique
	-- Utilisation de templates
	-- Contrôle hiérarchique du niveau d'affichage
	- Choix spécifique de vues

	-- Scan Simple
	-- Inclusion de templates partiels
	-- Passage de variables du contrôleur à la vue
	-- Variable simple
	-- Passage de plusieurs variables
	-- Mise en cache

	-- Evènements sur les vues

