
2026/01/31 16:07 1/4 Concepts Git

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Concepts Git

Git est un logiciel de gestion de versions (versionning), créé par Linus TORVALDS en 2005, initialement prévu
pour le développement du noyau Linux.

Lancé en 2008, GitHub est un service web d'hébergement et de gestion de développement de logiciels, utilisant
git.

-- Repo/Repository

Un repository est un dépôt où un projet est hébergé, permettant de stocker les différentes versions du code.

-- Fork

Un “fork” est une copie d'un repository, permettant de travailler sur la copie qui devient un projet à part
entière, au même titre que l'original. “Forker” un repository permet d'effectuer librement des changements sur
1 projet, sans affecter l'original.

La plupart du temps, les forks permettent d'effectuer et de proposer des changements à un projet original (dans
ce cas il faudra faire une pull request pour solliciter une intégration des changements effectués), ou
deviennent un nouveau point de départ pour un autre projet.

-- Clone

Le clone permet de créer une copie locale d'un projet forké ou créé, pour pouvoir ensuite travailler.

git clone repositoryUrl

voir http://git-scm.com/docs/git-clone

-- Fetch

Le fetch permet de mettre à jour sa copie locale du projet à partir de la version hébergée sur le serveur et
potentiellement modifiée par les autres membres de l'équipe. Le fetch est indispensable avant tout travail, pour
éviter les futurs conflits. Il permet d'intégrer les commits réalisés par les autres dans sa copie locale.

Chacun des membres d'une équipe étant susceptible d’apporter des modifications au projet il est indispensable
que tout le monde dispose en permanence du code le plus récent et demande fréquemment au dépôt principal
s’il y a des mises à jours : c'est le rôle du fetch.

http://github.com
http://git-scm.com/docs/git-clone

Last update: 2019/08/31 14:37 slam5:collaboration:git http://slamwiki2.kobject.net/slam5/collaboration/git?rev=1442489524

http://slamwiki2.kobject.net/ Printed on 2026/01/31 16:07

git fetch repositoryName

voir http://git-scm.com/docs/git-fetch

-- Commit

Le commit permet de valider toutes les modifications effectuées sur un projet pour en créer une nouvelle
version.

Le commit doit être accompagné (c'est indispensable) d'un message, composé d'un titre et d'une description,
qui apporte des précisions sur les modifications opérées.
Le message permettant aux autres développeurs de comprendre la nature des modifications, il est important de
s'appliquer à le rédiger.

Comparez le message suivant :

some css
styling
ooops
misc fixes and cleanups

A celui-ci :

add subtle background pattern to body
make subheadings larger on archive pages
fix typo in site footer
cleanup code with htmltidy

L'un est clairement plus explicite et plus utile que l'autre…

git commit -a -m"Message de validation du commit..."

voir http://git-scm.com/docs/git-commit

-- Branch

La branche par défaut d'un projet est la branche master, celle sur laquelle sont effectués les commits. Une
branche correspond à un ensemble de commits consécutifs, permettant de faire avancer un projet.

Il est parfois indispensable de créer une nouvelle branche, par exemple pour ajouter une nouvelle fonctionnalité
à un projet, ou pour résoudre un bug particulier.

Les branches permettent de séparer un projet, et de pouvoir travailler sur une nouvelle fonctionnalité (à risque)
ou sur la résolution d'un bug, sans perturber et déstabiliser l'existant.

Une fois la fonctionnalité implémentée et testée ou le bug résolu, il sera alors possible de réunir la nouvelle
branche avec la branche master par un merge.

http://git-scm.com/docs/git-fetch
http://git-scm.com/docs/git-commit

2026/01/31 16:07 3/4 Concepts Git

SlamWiki 2.1 - http://slamwiki2.kobject.net/

git branch branchName

voir http://git-scm.com/docs/git-branch

git checkout branchName

voir http://git-scm.com/docs/git-checkout

git merge branchName

voir http://git-scm.com/docs/git-merge

-- Push

Le commit permet de créer une nouvelle version, qu'il faut ensuite envoyer vers le repository pour la rendre
accessible aux autres développeurs, en faisant un push, vers une branche du projet (master par défaut).

git push repositoryName master

-- Conflits

Identifier les conflits :

git status

voir http://git-scm.com/docs/git-status

Les éventuels fichiers en conflit apparaissent comme unmerged

Editez les fichiers en conflit, et effectuez les modifications nécessaires

Valider ensuite les modifications :

git add fileName

voir http://git-scm.com/docs/git-add

Effectuer le commit, puis le push.

http://git-scm.com/docs/git-branch
http://git-scm.com/docs/git-checkout
http://git-scm.com/docs/git-merge
http://git-scm.com/docs/git-status
http://git-scm.com/docs/git-add

Last update: 2019/08/31 14:37 slam5:collaboration:git http://slamwiki2.kobject.net/slam5/collaboration/git?rev=1442489524

http://slamwiki2.kobject.net/ Printed on 2026/01/31 16:07

-- .gitignore

Le fichier .gitignore permet de spécifier les fichiers, dossiers ou groupes de fichiers qui doivent être ignorés
par git et non publiés (les fichiers de configuration, par exemple, qui peuvent contenir des infos sensibles, ou les
fichiers spécifiques à la machine du développeur):

Exemple de fichier .gitignore

Fichiers à ne pas synchroniser
 *.txt
 !readme.txt
 conf/

Signification :

Exclusion de :

Tous les fichiers texte (*.txt)
Sauf le fichier readme.txt
et tout le dossier conf

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam5/collaboration/git?rev=1442489524

Last update: 2019/08/31 14:37

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam5/collaboration/git?rev=1442489524

	Concepts Git
	-- Repo/Repository
	-- Fork
	-- Clone
	-- Fetch
	-- Commit
	-- Branch
	-- Push
	-- Conflits
	-- .gitignore
	Exemple de fichier .gitignore
	Signification :

