2026/01/29 22:17 1/12 Tests fonctionnels automatisés & intégration continue

Tests fonctionnels automatisés & intégration
continue

L'automatisation des tests fonctionnels consiste a créer des scénarii de tests qui pourront ensuite étre
reproduits a la demande (exécutés) au cours du développement.

¢ La réalisation d'un scénario permet de mieux identifier le besoin exprimé

e La mise en place du test relatif a une fonctionnalité permet de tester cette fonctionnalité (en cours et en
fin d'implémentation)

o L'exécution d'une suite de tests permet de vérifier la non-régression d'un projet suite a une modification
ou l'introduction d'une nouvelle fonctionnalité.

Voir Tests Fonctionnels manuels pour I'élaboration des scénarii de test.

-- Mise en place des outils pour PHP

-- Composer

Composer est un gestionnaire de paquets compatible GIT permettant d'installer ou de mettre a jour les librairies
incluses dans un projet a partir d'un fichier de configuration composer.json, déclarant les dépendances du
projet.

Installation

Sous Windows :

o télécharger et installer Composer-Setup.exe
» Ajouter le dossier d'installation de composer dans la variable PATH de windows pour pouvoir exécuter
composer directement en ligne de commande.

Vérifier I'installation :
Dans un terminal : Frapper composer -v puis Entrée ¢

:\Jcrcomposer

-- PHPUnit et WebDriver

PHPUnit va permettre de réaliser des tests unitaires (différents des tests fonctionnels).
Pour la partie fonctionnelle, nous utiliserons Selenium Server + Facebook WebDriver, pour émuler les
interactions utilisateur dans un navigateur.

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/slam5/testsfonctionnels/manuels
https://getcomposer.org/Composer-Setup.exe
http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/composerv.png?id=slam5%3Atestsfonctionnels%3Aautomatises

Last update: 2019/08/31 14:21 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises

Créer le fichier composer.json a la racine de votre projet :

{
"require-dev": {
"facebook/webdriver": "dev-master",
"phpunit/phpunit": "~4.8"
}
}

Dans le terminal
A partir du dossier de votre projet, Frapper composer install puis Entrée «

Vérifiez I'installation correcte des packages dans le dossier vendor du projet.
-- PhpUnit

PhpUnit permet de réaliser des tests unitaires, relatifs a la bonne exécution de parties de code (fonction ou
méthode).

-- Configuration

Créer un dossier tests/ a la racine du projet a tester.

Créer le fichier TestHelper.php adapté qui permettra de faire les inclusions nécessaires avant le lancement de
PhpUnit.

Créer le fichier PHPunit.xml dans le méme dossier, faisant référence au fichier TestHelper.php, et permettant
de lancer tous les tests inclus dans le dossier courant (./) et ses sous-dossiers :

<?xml version="1.0" encoding="UTF-8"7>
<phpunit bootstrap="TestHelper.php"
backupGlobals="false"
backupStaticAttributes="false"
verbose="true"
colors="true"
convertErrorsToExceptions="true"
convertNoticesToExceptions="true"
convertWarningsToExceptions="true"
processIsolation="false"
stopOnFailure="false"
syntaxCheck="true">
<testsuite name="Testsuite">
<directory>./</directory>
</testsuite>
</phpunit>

-- Premier test

http://slamwiki2.kobject.net/ Printed on 2026/01/29 22:17

http://slamwiki2.kobject.net/slam5/testsunitaires/phpunit

2026/01/29 22:17 3/12 Tests fonctionnels automatisés & intégration continue

Créer un premier test (juste pour vérifier le bon fonctionnement de PHPunit):

<?php
class PHPUnitTest extends \PHPUnit Framework TestCase {
private $variable;
/* (non-PHPdoc)
* @see PHPUnit Framework TestCase::setUp()
*/
protected function setUp() {
$this->variable=1;

}

public function testIncVariable(){
$this->assertEquals($this->variable, 1);
for($i=0;$i<10;$i++){
$this->variable+=1;
}

$this->assertEquals(1l, $this->variable);

}

public function testVariable(){
$this->assertEquals($this->variable, 1);
}
/* (non-PHPdoc)
* @see PHPUnit Framework TestCase::tearDown()
*/
protected function tearDown() {
$this->variable=0;

}

Aller en invite de commandes dans le dossier tests du projet et exécuter :
phpunit puis Entrée ¢

C:\xampp\htdocs\helpdesk\tests>phpunit
PHPUnit 4.8.9 by Sebastian Bergmann and contributors.

Runtime: PHP 5.6.3 with Xdebug 2.2.6
Configuration: C:\xampp\htdocs\helpdesk\tests\PHPunit.xml

Time: 15.47 seconds, Memory: 4.58Mb
OK (2 tests, 26 assertions)

C:\xampp\htdocs\helpdesk\tests>_

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises

-- Caractéristiques d'une classe de test PHPunit

1. Une classe PHPunit dérive de PHPUnit_Framework_TestCase. Son nom doit commencer par Test...
2. Les méthodes de test contenues dans la classe sont publiques et se terminent par ...test
3. Les méthodes qu'il est possible de surdéfinir :

1. setUpBeforeClass = exécutée une seule fois avant I'appel du constructeur de la classe

2. setUp = exécutée avant chaque test (méthode se terminant par ...test)

3. tearDownAfterClass = exécutée une seule fois apres le dernier tearDown

4. tearDown = exécutée apres chaque test (méthode se terminant par ...test)

-- Selenium

Selenium permet de réaliser des tests fonctionnels. Il permet de réaliser ce que I'utilisateur pourrait
entreprendre, pour mettre en oeuvre une fonctionnalité, puis de tester les résultats obtenus.

-- Configuration
-- Selenium Server

Le serveur Selenium permet de contrbler les navigateurs, pour simuler les interactions entre I'utilisateur et
I'application Web.
Selenium peut fonctionner avec les navigateurs disposant du webDriver adéquat associé.

1. Télécharger Selenium Server Standalone sur http://docs.seleniumhg.org/download/
2. Télécharger en méme temps et au méme emplacement le webDriver pour Chrome (chromeDriver.exe)

Création d'un fichier de démarrage du serveur :
Créer un dossier server dans le projet Web :

1. Copier le fichier selenium-server-standalone-xxxx.jar dans ce dossier
2. copier chromeDriver.exe dans un sous dossier driver
3. créer dans le dossier server le fichier start-server.bat :

java -jar selenium-server-standalone-2.47.1.jar -
Dwebdriver.chrome.driver=driver/chromedriver.exe

En invite de commande, Tester le lancement du serveur Selenium :

Frapper start-server.bat puis Entrée ¢

RemoteWebDriver instances should connect to:

is up and running

http://slamwiki2.kobject.net/ Printed on 2026/01/29 22:17

http://docs.seleniumhq.org/download/
http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/seleniumserver.png?id=slam5%3Atestsfonctionnels%3Aautomatises

2026/01/29 22:17 5/12 Tests fonctionnels automatisés & intégration continue

Frapper CTRL+C pour l'arréter

-- PHP webServer

Pour les tests, nous utiliserons PHP en tant que serveur Web (plutdt que Apache) :

Démarrage de PHP en tant que serveur Web :

php -S 127.0.0.1:8090

Création d'un fichier de routage
PHP ne supportant pas les .htaccess comme apache et n'ayant pas de module de réécriture d'url, il est
nécessaire d'émuler un pseudo-routage :

Pour le cas : micro-framework :
Créer le fichier .htrouter.php dans le dossier app de votre application web :

<?php
if (preg match('/\.(?:png|jpg|jpeg|gif|ttf|eot|svg|woff|woff2|js|css)$/",
$ SERVER["REQUEST URI"])) {

return false;

} else {
$ GET["c"]=substr($ SERVER["REQUEST URI"],1);
include @ DIR . '/startup.php';

}

Création d'un fichier de lancement du server php
Créer le fichier startPhpServer.bat dans le dossier racine de votre application :

php -S 127.0.0.1:8090 app/.htrouter.php

Aller a I'adresse 127.0.0.1:8090 de votre navigateur pour tester la réponse.

-- Préparation Selenium

Créer la classe AjaxUnitTest dans le dossier tests pour faciliter la manipulation de I'objet webDriver :

<?php

/**
* Class AjaxUnitTest
*/
abstract class AjaxUnitTest extends UnitTestCase {
use \WebDriverAssertions;
use \WebDriverDevelop;
protected static $url = 'http://127.0.0.1:8090/"';

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises

/**

* @var \RemoteWebDriver

*/

protected static $webDriver;

/* (non-PHPdoc)
* @see PHPUnit Framework TestCase::setUpBeforeClass()
*/
public static function setUpBeforeClass() {
$capabilities = array(\WebDriverCapabilityType: :BROWSER NAME =>
'firefox',\WebDriverCapabilityType::VERSION=>'41.0");
self::$webDriver = \RemoteWebDriver::create('http://localhost:4444/wd/hub',
$capabilities);

}

public function setUp() {
parent::setup();

}

/* (non-PHPdoc)
* @see PHPUnit Framework TestCase::tearDownAfterClass()
*/
public static function tearDownAfterClass() {
if(self::$webDriver!=null)
self::$webDriver->close();

/**
* Loads the relative url $url in web browser
* @param string $url
*/
public static function get($url=""){
$url=self::$url.$url;
self::$webDriver->get($url);
}

/**

* Returns a given element by id

* @param string $id HTML id attribute of the element to return

* @return RemoteWebElement

*/

public function getElementById($id){

return self::$webDriver->findElement (\WebDriverBy::id($id));

}

/**
* Tests if an element exist
* @param string $css selector
* @return boolean
*/
public function elementExists($css selector){
return sizeof($this->getElementsBySelector($css selector))!==0;

}

http://slamwiki2.kobject.net/ Printed on 2026/01/29 22:17

2026/01/29 22:17 7/12 Tests fonctionnels automatisés & intégration continue

/**
* Returns a given element by css selector
* @param string $css_selector
* @return RemoteWebElement
*/
public function getElementBySelector($css selector){
return
self::$webDriver->findElement (\WebDriverBy: :cssSelector($css selector));

}

/**
* Returns the given elements by css selector
* @param string $css selector
* @return RemoteWebElement
*/
public function getElementsBySelector($css selector){
return
self::$webDriver->findElements (\WebDriverBy: :cssSelector($css selector));

}

/**
* Return true if the actual page contains $text
* @param string $text The text to search for
*/
public function assertPageContainsText($text){
$this->assertContains($text, self::$webDriver->getPageSource());

}

-- Tests Selenium

-- Création des pages a tester (pour I'exemple)

Cas avec utilisation Micro-framework (a adapter pour d'autres utilisations) :

Créer une page affichant “Hello Selenium”, et un formulaire frm disposant d'une zone de texte text.
Sur le POST du formulaire, I'action est renvoyée vers une page affichant le résultat du post.

<?php

use micro\controllers\BaseController;
use micro\utils\RequestUtils;

class Selenium extends BaseController {

public function construct() {
parent:: construct();

}

public function index() {
$this->initialize();
echo "<hl>Hello Selenium</hl>";
echo "<form method='POST' action='Selenium/post' name='frm' id='frm'>";
echo "<input type='text' name='text' id='text'>";

}

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises

public function post(){
if(RequestUtils::isPost()){
echo "<div id='result'>".$ POST['text']."</div>";
}

-- Création des tests

Nous allons tester que la page intiale selenium/ affiche bien “Hello Selenium”
Puis qu'une saisie et une validation permettent bien d'afficher la réponse dans la page suivante.

<?php
class SeleniumTest extends \AjaxUnitTest{
public static function setUpBeforeClass() {
parent::setUpBeforeClass();
self::get("Selenium/index");
}
public function testDefault(){
$this->assertPageContainsText('Hello Selenium');
$this->assertTrue($this->elementExists ("#text"));
$this->assertTrue($this->elementExists("#frm"));
}
public function testValidation(){
$this->getElementById("text")->sendKeys("okay");
$this->getElementById("text")->sendKeys ("\XEE\x80\x87");
SeleniumTest: :$webDriver->manage()->timeouts()->implicitlyWait(5);
$this->assertEquals("okay",$this->getElementById("result")->getText());

Aller en invite de commandes dans le dossier tests du projet et exécuter :

phpunit puis Entrée ¢

http://slamwiki2.kobject.net/ Printed on 2026/01/29 22:17

2026/01/29 22:17 9/12 Tests fonctionnels automatisés & intégration continue

C:\xampp\htdocs\helpdesk\tests>phpunit
PHPUnit 4.8.9 by Sebastian Bergmann and contributors.

Runtime: PHP 5.6.3 with Xdebug 2.2.6
Configuration: C:\xampp\htdocs\helpdesk\tests\PHPunit.xml

Time: 15.47 seconds, Memory: 4.56Mb

OK (2 tests, 26 assertions)

C:\xampp\htdocs\helpdesk\tests>_

1.
2.
3.
4.

-- Travis-ci

Le test fait une requéte (get) vers la page /selenium/index

Saisi okay dans la zone de texte d'id text

Valide le formulaire frm par la touche ENTREE

Vérifie que la page résultat /selenium/post affiche bien le résultat okay dans la div d'id result

Travis-ci est un service Web open source d'intégration continue des tests sur les projets GitHub.
Une fois configuré, et associé a un projet GitHub, il permet d'exécuter automatiquement I'ensemble des tests a
chaque commit Git.

Travis-ci permet de lancer les tests sur une machine virtuelle, en ayant la possibilité de choisir une ou plusieurs
configurations logicielles dans le cadre desquelles les tests seront lancés.

-- Association du service Travis-ci a GitHub

¢ Aller a l'adresse https://travis-ci.org/ et connectez-vous avec votre compte Github.
¢ Choisissez ensuite Add new repository et sélectionner dans la liste le projet Git a tester.

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://travis-ci.org/

Last update: 2019/08/31 14:21 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises

w0
Flick the repository \dd .tra ml f Trigger your first build
tch you P ith a git push

jcheron/angular.js
i'i|'l'-li"?-|'| dangular-sampies
jcheron/bootstrap
jcheron/cj !

jcheron/helpdesk A Helpdesk Application for educational purposes using a micro

-- Configuration

Créer le fichier .travis.yml a la racine du projet a tester :

language: php
php:
- 5.4
- 5.5
- 5.6
addons:
firefox: "41.0"
before script:

- mysql < app/database/helpdesk.sql -uroot

- wget http://getcomposer.org/composer.phar

- php composer.phar install

- "sh -e /etc/init.d/xvfb start"

- "export DISPLAY=:99.0"

- "wget
http://selenium-release.storage.googleapis.com/2.45/selenium-server-standalone-2.45
.0.jar"

- "java -jar selenium-server-standalone-2.45.0.jar > /dev/null &"

- sleep 5

- php -S 127.0.0.1:8090 app/.htrouter.php &

- sleep 5
script: (cd tests; phpunit --configuration PHPunit.xml --debug)

Effectuer le push vers github, puis aller sur travis-ci pour observer le déroulement des tests :

http://slamwiki2.kobject.net/ Printed on 2026/01/29 22:17

http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/travis-ci.png?id=slam5%3Atestsfonctionnels%3Aautomatises

2026/01/29 22:17 11/12 Tests fonctionnels automatisés & intégration continue

X= Remove Log 4= Download Log

Using worker: worker-linux-docker-3a@652d3.prod.travis-ci.org:travis-linux-8

Build system information

% git clone --depth=58 --branch=tests https://github.com/jcheron/helpdesk.git jcheron/helpdesk
% export FIREFOX_SOURCE_URL=http://releases.mozilla.org/pub/firefox/releases/41.8/1inux-xB86_64/en

This job is runming on container-based infrastructure, which does not allow use of 'sudo’, setwid and setpuid executables.
If you require sudo, add 'sudo: required" to your .travis.yml
See hitp://docs.travis-ci.com/user fworkers/container-based-infrastructure/ for details.

PHP 5.4.37 (cli) (built: Feb 12 2815 @1:86:86)
Copyright (c) 1997-2814 The PHP Group
Zend Engine v2.4.8, Copyright) 1998-2814 Zend Technologles

version 1.8-

% mysql < app/database/helpdesk.sgl -uroot

Si tout est ok, la couleur devient verte, et vous avez le plaisir d'apposer le tag M dans le
README.md de votre projet GitHub.

-- Couverture des tests

Il s'agit de déterminer le taux de couverture du code par les tests (la part du code ayant été testée).
codecov

codecov est un outil d'intégration continue permettant de gérer le coverage.
Sur codecov :

1. se connecter avec github
2. Ajouter le repository testé

Configuration travis ci

Ajouter a la fin du fichier de configuration de travis :

script: (cd tests; phpunit --configuration PHPunit.xml --debug --coverage-
clover=coverage.xml)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/travis-ci-report.png?id=slam5%3Atestsfonctionnels%3Aautomatises
https://codecov.io/

Last update: 2019/08/31 14:21 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises

after success:

- bash <(curl -s https://codecov.io/bash)
notifications:

email: false

Configuration de phpUnit

Création d'une whitelist de fichiers pour le Code Coverage :

<phpunit>

<filter>
<whitelist processUncoveredFilesFromWhitelist="true">
<directory suffix=".php">/path/to/files</directory>
<file>/path/to/file</file>
<exclude>
<directory suffix=".php">/path/to/files</directory>
<file>/path/to/file</file>
</exclude>
</whitelist>
</filter>

</phpunit>

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/ Printed on 2026/01/29 22:17

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises

	Tests fonctionnels automatisés & intégration continue
	-- Mise en place des outils pour PHP
	-- Composer
	Installation

	-- PHPUnit et WebDriver

	-- PhpUnit
	-- Configuration
	-- Premier test
	-- Caractéristiques d'une classe de test PHPunit

	-- Selenium
	-- Configuration
	-- Selenium Server
	-- PHP webServer

	-- Préparation Selenium
	-- Tests Selenium
	-- Création des pages à tester (pour l'exemple)
	-- Création des tests

	-- Travis-ci
	-- Association du service Travis-ci à GitHub
	-- Configuration

	-- Couverture des tests
	codecov
	Configuration travis ci
	Configuration de phpUnit

