2026/01/31 13:30 1/11 Tests fonctionnels automatisés & intégration continue

Tests fonctionnels automatisés

L'automatisation des tests fonctionnels consiste a créer des scénarii de tests qui pourront ensuite étre
reproduits a la demande (exécutés) au cours du développement.

¢ La réalisation d'un scénario permet de mieux identifier le besoin exprimé

¢ La mise en place du test relatif a une fonctionnalité permet de tester cette fonctionnalité (en cours et en
fin d'implémentation)

e L'exécution d'une suite de tests permet de vérifier la non-régression d'un projet suite a une modification
ou l'introduction d'une nouvelle fonctionnalité.

-- Mise en place des outils pour PHP

-- Composer

Composer est un gestionnaire de paquets compatible GIT permettant d'installer ou de mettre a jour les librairies
incluses dans un projet a partir d'un fichier de configuration composer.json, déclarant les dépendances du
projet.

Installation

Sous Windows :

o télécharger et installer Composer-Setup.exe
o Ajouter le dossier d'installation de composer dans la variable PATH de windows pour pouvoir exécuter
composer directement en ligne de commande.

Vérifier l'installation :
Dans un terminal : Frapper composer -v puis Entrée «

C:\Users\jcrcomposer -v

-- PHPUnit et WebDriver

PHPUnit va permettre de réaliser des tests unitaires (différents des tests fonctionnels).
Pour la partie fonctionnelle, nous utiliserons Selenium Server + Facebook WebDriver, pour émuler les
interactions utilisateur dans un navigateur.

Créer le fichier composer.json a la racine de votre projet :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://getcomposer.org/Composer-Setup.exe
http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/composerv.png?id=slam5%3Atestsfonctionnels%3Aautomatises

Last update:

2019/08/31 14:37 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443652661

{
"require-dev": {
"facebook/webdriver": "dev-master",
"phpunit/phpunit": "~4.8"
}
}

Dans le terminal
A partir du dossier de votre projet, Frapper composer install puis Entrée «

Vérifiez I'installation correcte des packages dans le dossier vendor du projet.
-- PhpUnit

PhpUnit permet de réaliser des tests unitaires, relatifs a la bonne exécution de parties de code (fonction ou
méthode).

-- Configuration

Créer un dossier tests/ a la racine du projet a tester.

Créer le fichier TestHelper.php adapté qui permettra de faire les inclusions nécessaires avant le lancement de
PhpUnit.

Créer le fichier PHPunit.xml dans le méme dossier, faisant référence au fichier TestHelper.php, et permettant
de lancer tous les tests inclus dans le dossier courant (./) et ses sous-dossiers :

<?xml version="1.0" encoding="UTF-8"7>
<phpunit bootstrap="TestHelper.php"
backupGlobals="false"
backupStaticAttributes="false"
verbose="true"
colors="true"
convertErrorsToExceptions="true"
convertNoticesToExceptions="true"
convertWarningsToExceptions="true"
processIsolation="false"
stopOnFailure="false"
syntaxCheck="true">
<testsuite name="Testsuite">
<directory>./</directory>
</testsuite>
</phpunit>

-- Premier test

Créer un premier test (juste pour vérifier le bon fonctionnement de PHPunit):

http://slamwiki2.kobject.net/ Printed on 2026/01/31 13:30

http://slamwiki2.kobject.net/slam5/testsunitaires/phpunit

2026/01/31 13:30 3/11 Tests fonctionnels automatisés & intégration continue

<?php
class PHPUnitTest extends \PHPUnit Framework TestCase {
private $variable;
/* (non-PHPdoc)
* @see PHPUnit Framework TestCase::setUp()
*/
protected function setUp() {
$this->variable=1;

}

public function testIncVariable(){
$this->assertEquals($this->variable, 1);
for($i=0;%$i<10;$i++){
$this->variable+=1;
}

$this->assertEquals(1l, $this->variable);

}

public function testVariable(){
$this->assertEquals($this->variable, 1);
}
/* (non-PHPdoc)
* @see PHPUnit Framework TestCase::tearDown()
*/
protected function tearDown() {
$this->variable=0;

}

Aller en invite de commandes dans le dossier tests du projet et exécuter :
phpunit puis Entrée ¢

C:\xampp\htdocs\helpdesk\tests>phpunit
PHPUnit 4.8.9 by Sebastian Bergmann and contributors.

Runtime: PHP 5.6.3 with Xdebug 2.2.6
Configuration: C:\xampp\htdocs\helpdesk\tests\PHPunit.xml

Time: 15.47 seconds, Memory: 4.58Mb
OK (2 tests, 26 assertions)

C:\xampp\htdocs\helpdesk\tests>_

-- Caractéristiques d'une classe de test PHPunit

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update:

2019/08/31 14:37 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443652661

1. Une classe PHPunit dérive de PHPUnit_Framework_TestCase. Son nom doit commencer par Test...
2. Les méthodes de test contenues dans la classe sont publiques et se terminent par ...test
3. Les méthodes qu'il est possible de surdéfinir :

1. setUpBeforeClass = exécutée une seule fois avant I'appel du constructeur de la classe

2. setUp = exécutée avant chaque test (méthode se terminant par ...test)

3. tearDownAfterClass = exécutée une seule fois apres le dernier tearDown

4. tearDown = exécutée apres chaque test (méthode se terminant par ...test)

-- Selenium

Selenium permet de réaliser des tests fonctionnels. Il permet de réaliser ce que I'utilisateur pourrait
entreprendre, pour mettre en oeuvre une fonctionnalité, puis de tester les résultats obtenus.

-- Configuration
-- Selenium Server

Le serveur Selenium permet de contréler les navigateurs, pour simuler les interactions entre I'utilisateur et
I'application Web.
Selenium peut fonctionner avec les navigateurs disposant du webDriver adéquat associé.

1. Télécharger Selenium Server Standalone sur http://docs.seleniumhg.org/download/
2. Télécharger en méme temps et au méme emplacement le webDriver pour Chrome (chromeDriver.exe)

Création d'un fichier de démarrage du serveur :
Créer un dossier server dans le projet Web :

1. Copier le fichier selenium-server-standalone-xxxx.jar dans ce dossier
2. copier chromeDriver.exe dans un sous dossier driver
3. créer dans le dossier server le fichier start-server.bat :

java -jar selenium-server-standalone-2.47.1.jar -
Dwebdriver.chrome.driver=driver/chromedriver.exe
En invite de commande, Tester le lancement du serveur Selenium :

Frapper start-server.bat puis Entrée ¢

Jchromedra

shouwld connect

Frapper CTRL+C pour l'arréter

http://slamwiki2.kobject.net/ Printed on 2026/01/31 13:30

http://docs.seleniumhq.org/download/
http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/seleniumserver.png?id=slam5%3Atestsfonctionnels%3Aautomatises

2026/01/31 13:30 5/11 Tests fonctionnels automatisés & intégration continue

-- PHP webServer

Pour les tests, nous utiliserons PHP en tant que serveur Web (plutét que Apache) :

Démarrage de PHP en tant que serveur Web :

php -S 127.0.0.1:8090

Création d'un fichier de routage
PHP ne supportant pas les .htaccess comme apache et n'ayant pas de module de réécriture d'url, il est
nécessaire d'émuler un pseudo-routage :

Pour le cas : micro-framework :
Créer le fichier .htrouter.php dans le dossier app de votre application web :

<?php
if (preg_match('/\.(?:png|jpg|jpeg|gif|ttf|eot|svg|woff|woff2|js|css)$/",
$ SERVER["REQUEST URI"])) {

return false;

} else {
$ GET["c"]=substr($ SERVER["REQUEST URI"],1);
include DIR . '/startup.php';

}

Création d'un fichier de lancement du server php
Créer le fichier startPhpServer.bat dans le dossier racine de votre application :

php -S 127.0.0.1:8090 app/.htrouter.php
Aller a I'adresse 127.0.0.1:8090 de votre navigateur pour tester la réponse.
-- Préparation Selenium

Créer la classe AjaxUnitTest dans le dossier tests pour faciliter la manipulation de I'objet webDriver :

<?php

/**
* Class AjaxUnitTest
*/
abstract class AjaxUnitTest extends UnitTestCase {
use \WebDriverAssertions;
use \WebDriverDevelop;
protected static $url = 'http://127.0.0.1:8090/"';
/**
* @var \RemoteWebDriver

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update:
2019/08/31 14:37

*/
protected static $webDriver;

slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443652661

/* (non-PHPdoc)
* @see PHPUnit Framework TestCase::setUpBeforeClass()
*/
public static function setUpBeforeClass() {
$capabilities = array(\WebDriverCapabilityType: :BROWSER NAME =>
'firefox',\WebDriverCapabilityType::VERSION=>'41.0");
self::$webDriver = \RemoteWebDriver::create('http://localhost:4444/wd/hub’,
$capabilities);

}

public function setUp() {
parent::setup();

}

/* (non-PHPdoc)
* @see PHPUnit Framework TestCase::tearDownAfterClass()
*/
public static function tearDownAfterClass() {
if(self::$webDriver!=null)
self::$webDriver->close();

/**
* Loads the relative url $url in web browser
* @param string $url
*/
public static function get($url=""){
$url=self::$url.$url;
self::$webDriver->get($url);
}

/**

* Returns a given element by id

* @param string $id HTML id attribute of the element to return

* @return RemoteWebElement

*/

public function getElementById($id){

return self::$webDriver->findElement (\WebDriverBy::id($id));

}

/**
* Tests if an element exist
* @param string $css selector
* @return boolean
*/
public function elementExists($css selector){
return sizeof($this->getElementsBySelector($css selector))!==0;

}

/**
* Returns a given element by css selector

http://slamwiki2.kobject.net/ Printed on 2026/01/31 13:30

2026/01/31 13:30 7/11 Tests fonctionnels automatisés & intégration continue

* @param string $css selector
* @return RemoteWebElement
*/
public function getElementBySelector($css selector){
return
self::$webDriver->findElement (\WebDriverBy::cssSelector($css selector));

}

/**
* Returns the given elements by css selector
* @param string $css selector
* @return RemoteWebElement
*/
public function getElementsBySelector($css selector){
return
self::$webDriver->findElements (\WebDriverBy::cssSelector($css selector));

}

/**
* Return true if the actual page contains $text
* @param string $text The text to search for
*/
public function assertPageContainsText($text){
$this->assertContains($text, self::$webDriver->getPageSource());

}

-- Tests Selenium

-- Création des pages a tester (pour I'exemple)

Cas avec utilisation Micro-framework (a adapter pour d'autres utilisations) :

Créer une page affichant “Hello Selenium”, et un formulaire frm disposant d'une zone de texte text.
Sur le POST du formulaire, I'action est renvoyée vers une page affichant le résultat du post.

<?php

use micro\controllers\BaseController;
use micro\utils\RequestUtils;

class Selenium extends BaseController {

public function construct() {
parent:: construct();

}

public function index() {
$this->initialize();
echo "<hl>Hello Selenium</h1>";
echo "<form method='POST' action='Selenium/post' name='frm' id='frm'>";
echo "<input type='text' name='text' id='text'>";

}

public function post(){

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update:
2019/08/31 14:37

if(RequestUtils::isPost()){
echo "<div id='result'>".$ POST['text']."</div>";

slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443652661

}

-- Création des tests

Nous allons tester que la page intiale selenium/ affiche bien “Hello Selenium”
Puis qu'une saisie et une validation permettent bien d'afficher la réponse dans la page suivante.

<?php
class SeleniumTest extends \AjaxUnitTest{
public static function setUpBeforeClass() {
parent::setUpBeforeClass();
self::get("Selenium/index");
}
public function testDefault(){
$this->assertPageContainsText('Hello Selenium');
$this->assertTrue($this->elementExists ("#text"));
$this->assertTrue($this->elementExists("#frm"));
}
public function testValidation(){
$this->getElementById("text")->sendKeys("okay");
$this->getElementById("text")->sendKeys ("\XEE\Xx80\x87");
SeleniumTest: :$webDriver->manage()->timeouts()->implicitlyWait(5);
$this->assertEquals("okay",$this->getElementById("result")->getText());

Aller en invite de commandes dans le dossier tests du projet et exécuter :
phpunit puis Entrée «

C:\xampp\htdocs\helpdesk\tests>phpunit
PHPUnit 4.8.9 by Sebastian Bergmann and contributors.

Runtime: PHP 5.6.3 with Xdebug 2.2.6
Configuration: C:\xampp\htdocs\helpdesk\tests\PHPunit.xml

Time: 15.47 seconds, Memory: 4.58Mb
OK (2 tests, 26 assertions)

C:\xampp\htdocs\helpdesk\tests>_

http://slamwiki2.kobject.net/ Printed on 2026/01/31 13:30

2026/01/31 13:30 9/11 Tests fonctionnels automatisés & intégration continue

Le test fait une requéte (get) vers la page /selenium/index

. Saisi okay dans la zone de texte d'id text

. Valide le formulaire frm par la touche ENTREE

. Vérifie que la page résultat /selenium/post affiche bien le résultat okay dans la div d'id result

-- Travis-ci

Travis-ci est un service Web open source d'intégration continue des tests sur les projets GitHub.

Une fois configuré, et associé a un projet GitHub, il permet d'exécuter automatiqguement I'ensemble des tests a

chaque commit Git.

Travis-ci permet de lancer les tests sur une machine virtuelle, en ayant la possibilité de choisir une ou plusieurs

configurations logicielles dans le cadre desquelles les tests seront lancés.

-- Association du service Travis-ci a GitHub

 Aller a I'adresse https://travis-ci.org/ et connectez-vous avec votre compte Github.
¢ Choisissez ensuite Add new repository et sélectionner dans la liste le projet Git a tester.

g o
F1 he reposi vdd .tra mil file to Trigger your firs d
switch o y oL posit ith a git push

jcheron/angular.js
jcheron/angular-samples
jcheron/bootstrap
|cheran/cphalcon
jcheron/helpdesk A Helpdesk Application for educational purposes using a micro

-- Configuration

Créer le fichier .travis.yml a la racine du projet a tester :

language: php

php:
- 5.4

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://travis-ci.org/
http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/travis-ci.png?id=slam5%3Atestsfonctionnels%3Aautomatises

Last update: .) .) . o . . eae?ray—
2019/08/31 14:37 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443652661

- 5.5

- 5.6
addons:

firefox: "41.0"
before script:

- mysql < app/database/helpdesk.sql -uroot

- wget http://getcomposer.org/composer.phar

- php composer.phar install

- "sh -e /etc/init.d/xvfb start"

- "export DISPLAY=:99.0"

- "wget
http://selenium-release.storage.googleapis.com/2.45/selenium-server-standalone-2.45
.0.jar"

- "java -jar selenium-server-standalone-2.45.0.jar > /dev/null &"

- sleep 5

- php -S 127.0.0.1:8090 app/.htrouter.php &

- sleep 5
script: (cd tests; phpunit --configuration PHPunit.xml --debug)

Effectuer le push vers github, puis aller sur travis-ci pour observer le déroulement des tests :

M= Remove Log 4= Download Log

Using worker: worker-linux-docker-3a@652d3.prod.travis-ci.org:travis-linux-8
Build system information

% git clone depth=58 branch=tests hitps://fgithub.com/jcheron/helpdesk.git jcheron/helpdesk
% export FIREFOX SOURCE_URL=http://releases.mozilla.org/pub/firefox/releases/41.8/1inux-xB86 6&4/en-

This job is running on container-based infrastructure, which does not allow use of 'sude’, setwid and setpuid executables.
If you require sudo, add "suwdo: required” to your .travis.yml
See hitp://docs.travis-ci.comf/user/workers/container-based-infrastructure/ for details.
§ phpenv global 5.4 2>, v/null
$ php --version
PHP 5.4.37 (cli) (built: Feb 12 2815 @1:86:86)
Copyright (c) 1997-2814 The PHP Group
Zend Engine v2.4.8, Copyrignt (c) 1998-2014 Zend Technolo
with Xdebug v2.2.7, Copyright (c) 2882-2815, by Derick Rethans

% mysql < app/database/helpdesk.sgl -uroot

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443652661

Last update: 2019/08/31 14:37

http://slamwiki2.kobject.net/) Printed on 2026/01/31 13:30

http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/travis-ci-report.png?id=slam5%3Atestsfonctionnels%3Aautomatises
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443652661

2026/01/31 13:30 11/11 Tests fonctionnels automatisés & intégration continue

SlamWiki 2.1 - http://slamwiki2.kobject.net/

	Tests fonctionnels automatisés
	-- Mise en place des outils pour PHP
	-- Composer
	Installation

	-- PHPUnit et WebDriver

	-- PhpUnit
	-- Configuration
	-- Premier test
	-- Caractéristiques d'une classe de test PHPunit

	-- Selenium
	-- Configuration
	-- Selenium Server
	-- PHP webServer

	-- Préparation Selenium
	-- Tests Selenium
	-- Création des pages à tester (pour l'exemple)
	-- Création des tests

	-- Travis-ci
	-- Association du service Travis-ci à GitHub
	-- Configuration

