
2026/02/14 20:12 1/11 Tests fonctionnels automatisés & intégration continue

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Tests fonctionnels automatisés

L'automatisation des tests fonctionnels consiste à créer des scénarii de tests qui pourront ensuite être
reproduits à la demande (exécutés) au cours du développement.

La réalisation d'un scénario permet de mieux identifier le besoin exprimé
La mise en place du test relatif à une fonctionnalité permet de tester cette fonctionnalité (en cours et en
fin d'implémentation)
L'exécution d'une suite de tests permet de vérifier la non-régression d'un projet suite à une modification
ou l'introduction d'une nouvelle fonctionnalité.

Voir Tests Fonctionnels manuels pour l'élaboration des scénarii de test.

-- Mise en place des outils pour PHP

-- Composer

Composer est un gestionnaire de paquets compatible GIT permettant d'installer ou de mettre à jour les librairies
incluses dans un projet à partir d'un fichier de configuration composer.json, déclarant les dépendances du
projet.

Installation

Sous Windows :

télécharger et installer Composer-Setup.exe
Ajouter le dossier d'installation de composer dans la variable PATH de windows pour pouvoir exécuter
composer directement en ligne de commande.

Vérifier l'installation :
Dans un terminal : Frapper composer -v puis Entrée ↵

-- PHPUnit et WebDriver

PHPUnit va permettre de réaliser des tests unitaires (différents des tests fonctionnels).
Pour la partie fonctionnelle, nous utiliserons Selenium Server + Facebook WebDriver, pour émuler les
interactions utilisateur dans un navigateur.

Créer le fichier composer.json à la racine de votre projet :

http://slamwiki2.kobject.net/slam5/testsfonctionnels/manuels
https://getcomposer.org/Composer-Setup.exe
http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/composerv.png?id=slam5%3Atestsfonctionnels%3Aautomatises


Last update:
2019/08/31 14:37 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443732390

http://slamwiki2.kobject.net/ Printed on 2026/02/14 20:12

{
    "require-dev": {
        "facebook/webdriver": "dev-master",
        "phpunit/phpunit": "~4.8"
    }
}

Dans le terminal :
A partir du dossier de votre projet, Frapper composer install puis Entrée ↵

Vérifiez l'installation correcte des packages dans le dossier vendor du projet.

-- PhpUnit

PhpUnit permet de réaliser des tests unitaires, relatifs à la bonne exécution de parties de code (fonction ou
méthode).

-- Configuration

Créer un dossier tests/ à la racine du projet à tester.

Créer le fichier TestHelper.php adapté qui permettra de faire les inclusions nécessaires avant le lancement de
PhpUnit.

Créer le fichier PHPunit.xml dans le même dossier, faisant référence au fichier TestHelper.php, et permettant
de lancer tous les tests inclus dans le dossier courant (./) et ses sous-dossiers :

<?xml version="1.0" encoding="UTF-8"?>
<phpunit bootstrap="TestHelper.php"
         backupGlobals="false"
         backupStaticAttributes="false"
         verbose="true"
         colors="true"
         convertErrorsToExceptions="true"
         convertNoticesToExceptions="true"
         convertWarningsToExceptions="true"
         processIsolation="false"
         stopOnFailure="false"
         syntaxCheck="true">
    <testsuite name="Testsuite">
        <directory>./</directory>
    </testsuite>
</phpunit>

-- Premier test

Créer un premier test (juste pour vérifier le bon fonctionnement de PHPunit):

http://slamwiki2.kobject.net/slam5/testsunitaires/phpunit


2026/02/14 20:12 3/11 Tests fonctionnels automatisés & intégration continue

SlamWiki 2.1 - http://slamwiki2.kobject.net/

<?php
class PHPUnitTest extends \PHPUnit_Framework_TestCase {
    private $variable;
    /* (non-PHPdoc)
     * @see PHPUnit_Framework_TestCase::setUp()
     */
    protected function setUp() {
        $this->variable=1;
    }

    public function testIncVariable(){
        $this->assertEquals($this->variable, 1);
        for($i=0;$i<10;$i++){
            $this->variable+=1;
        }
        $this->assertEquals(11, $this->variable);
    }

    public function testVariable(){
        $this->assertEquals($this->variable, 1);
    }
    /* (non-PHPdoc)
     * @see PHPUnit_Framework_TestCase::tearDown()
     */
    protected function tearDown() {
        $this->variable=0;
    }
}

Aller en invite de commandes dans le dossier tests du projet et exécuter :

phpunit puis Entrée ↵

-- Caractéristiques d'une classe de test PHPunit



Last update:
2019/08/31 14:37 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443732390

http://slamwiki2.kobject.net/ Printed on 2026/02/14 20:12

Une classe PHPunit dérive de PHPUnit_Framework_TestCase. Son nom doit commencer par Test…1.
Les méthodes de test contenues dans la classe sont publiques et se terminent par …test2.
Les méthodes qu'il est possible de surdéfinir :3.

setUpBeforeClass ⇒ exécutée une seule fois avant l'appel du constructeur de la classe1.
setUp ⇒ exécutée avant chaque test (méthode se terminant par …test)2.
tearDownAfterClass ⇒ exécutée une seule fois après le dernier tearDown3.
tearDown ⇒ exécutée après chaque test (méthode se terminant par …test)4.

-- Selenium

Selenium permet de réaliser des tests fonctionnels. Il permet de réaliser ce que l'utilisateur pourrait
entreprendre, pour mettre en oeuvre une fonctionnalité, puis de tester les résultats obtenus.

-- Configuration

-- Selenium Server

Le serveur Selenium permet de contrôler les navigateurs, pour simuler les interactions entre l'utilisateur et
l'application Web.
Selenium peut fonctionner avec les navigateurs disposant du webDriver adéquat associé.

Télécharger Selenium Server Standalone sur http://docs.seleniumhq.org/download/1.
Télécharger en même temps et au même emplacement le webDriver pour Chrome (chromeDriver.exe)2.

Création d'un fichier de démarrage du serveur :

Créer un dossier server dans le projet Web :

Copier le fichier selenium-server-standalone-xxxx.jar dans ce dossier1.
copier chromeDriver.exe dans un sous dossier driver2.
créer dans le dossier server le fichier start-server.bat :3.

java -jar selenium-server-standalone-2.47.1.jar -
Dwebdriver.chrome.driver=driver/chromedriver.exe

En invite de commande, Tester le lancement du serveur Selenium :

Frapper start-server.bat puis Entrée ↵

Frapper CTRL+C pour l'arrêter

http://docs.seleniumhq.org/download/
http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/seleniumserver.png?id=slam5%3Atestsfonctionnels%3Aautomatises


2026/02/14 20:12 5/11 Tests fonctionnels automatisés & intégration continue

SlamWiki 2.1 - http://slamwiki2.kobject.net/

-- PHP webServer

Pour les tests, nous utiliserons PHP en tant que serveur Web (plutôt que Apache) :

Démarrage de PHP en tant que serveur Web :

php -S 127.0.0.1:8090

Création d'un fichier de routage
PHP ne supportant pas les .htaccess comme apache et n'ayant pas de module de réécriture d'url, il est
nécessaire d'émuler un pseudo-routage :

Pour le cas : micro-framework :
Créer le fichier .htrouter.php dans le dossier app de votre application web :

<?php
if (preg_match('/\.(?:png|jpg|jpeg|gif|ttf|eot|svg|woff|woff2|js|css)$/',
$_SERVER["REQUEST_URI"])) {
    return false;
} else {
    $_GET["c"]=substr($_SERVER["REQUEST_URI"],1);
    include __DIR__ . '/startup.php';
}

Création d'un fichier de lancement du server php
Créer le fichier startPhpServer.bat dans le dossier racine de votre application :

php -S 127.0.0.1:8090 app/.htrouter.php

Aller à l'adresse 127.0.0.1:8090 de votre navigateur pour tester la réponse.

-- Préparation Selenium

Créer la classe AjaxUnitTest dans le dossier tests pour faciliter la manipulation de l'objet webDriver :

<?php

/**
 * Class AjaxUnitTest
 */
abstract class AjaxUnitTest extends UnitTestCase {
    use \WebDriverAssertions;
    use \WebDriverDevelop;
    protected static $url = 'http://127.0.0.1:8090/';
    /**
    * @var \RemoteWebDriver



Last update:
2019/08/31 14:37 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443732390

http://slamwiki2.kobject.net/ Printed on 2026/02/14 20:12

    */
    protected static $webDriver;

    /* (non-PHPdoc)
     * @see PHPUnit_Framework_TestCase::setUpBeforeClass()
     */
    public static function setUpBeforeClass() {
        $capabilities = array(\WebDriverCapabilityType::BROWSER_NAME =>
'firefox',\WebDriverCapabilityType::VERSION=>'41.0');
        self::$webDriver = \RemoteWebDriver::create('http://localhost:4444/wd/hub',
$capabilities);
    }

    public function setUp() {
        parent::setup();
    }

    /* (non-PHPdoc)
     * @see PHPUnit_Framework_TestCase::tearDownAfterClass()
     */
    public static function tearDownAfterClass() {
        if(self::$webDriver!=null)
            self::$webDriver->close();
    }

    /**
     * Loads the relative url $url in web browser
     * @param string $url
     */
    public static function get($url=""){
        $url=self::$url.$url;
        self::$webDriver->get($url);
    }

    /**
     * Returns a given element by id
     * @param string $id HTML id attribute of the element to return
     * @return RemoteWebElement
     */
    public function getElementById($id){
        return self::$webDriver->findElement(\WebDriverBy::id($id));
    }

    /**
     * Tests if an element exist
     * @param string $css_selector
     * @return boolean
     */
    public function elementExists($css_selector){
        return sizeof($this->getElementsBySelector($css_selector))!==0;
    }

    /**
     * Returns a given element by css selector



2026/02/14 20:12 7/11 Tests fonctionnels automatisés & intégration continue

SlamWiki 2.1 - http://slamwiki2.kobject.net/

     * @param string $css_selector
     * @return RemoteWebElement
     */
    public function getElementBySelector($css_selector){
        return
self::$webDriver->findElement(\WebDriverBy::cssSelector($css_selector));
    }

    /**
     * Returns the given elements by css selector
     * @param string $css_selector
     * @return RemoteWebElement
     */
    public function getElementsBySelector($css_selector){
        return
self::$webDriver->findElements(\WebDriverBy::cssSelector($css_selector));
    }

    /**
     * Return true if the actual page contains $text
     * @param string $text The text to search for
     */
    public function assertPageContainsText($text){
        $this->assertContains($text, self::$webDriver->getPageSource());
    }
}

-- Tests Selenium

-- Création des pages à tester (pour l'exemple)

Cas avec utilisation Micro-framework (à adapter pour d'autres utilisations) :

Créer une page affichant “Hello Selenium”, et un formulaire frm disposant d'une zone de texte text.
Sur le POST du formulaire, l'action est renvoyée vers une page affichant le résultat du post.

<?php
use micro\controllers\BaseController;
use micro\utils\RequestUtils;
class Selenium extends BaseController {

    public function __construct() {
        parent::__construct();
    }

    public function index() {
        $this->initialize();
        echo "<h1>Hello Selenium</h1>";
        echo "<form method='POST' action='Selenium/post' name='frm' id='frm'>";
        echo "<input type='text' name='text' id='text'>";
    }

    public function post(){



Last update:
2019/08/31 14:37 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443732390

http://slamwiki2.kobject.net/ Printed on 2026/02/14 20:12

        if(RequestUtils::isPost()){
            echo "<div id='result'>".$_POST['text']."</div>";
        }
    }
}

-- Création des tests

Nous allons tester que la page intiale selenium/ affiche bien “Hello Selenium”
Puis qu'une saisie et une validation permettent bien d'afficher la réponse dans la page suivante.

<?php
class SeleniumTest extends \AjaxUnitTest{
    public static function setUpBeforeClass() {
        parent::setUpBeforeClass();
        self::get("Selenium/index");
    }
    public function testDefault(){
        $this->assertPageContainsText('Hello Selenium');
        $this->assertTrue($this->elementExists("#text"));
        $this->assertTrue($this->elementExists("#frm"));
    }
    public function testValidation(){
        $this->getElementById("text")->sendKeys("okay");
        $this->getElementById("text")->sendKeys("\xEE\x80\x87");
        SeleniumTest::$webDriver->manage()->timeouts()->implicitlyWait(5);
        $this->assertEquals("okay",$this->getElementById("result")->getText());
    }
}

Aller en invite de commandes dans le dossier tests du projet et exécuter :

phpunit puis Entrée ↵



2026/02/14 20:12 9/11 Tests fonctionnels automatisés & intégration continue

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Le test fait une requête (get) vers la page /selenium/index1.
Saisi okay dans la zone de texte d'id text2.
Valide le formulaire frm par la touche ENTREE3.
Vérifie que la page résultat /selenium/post affiche bien le résultat okay dans la div d'id result4.

-- Travis-ci

Travis-ci est un service Web open source d'intégration continue des tests sur les projets GitHub.
Une fois configuré, et associé à un projet GitHub, il permet d'exécuter automatiquement l'ensemble des tests à
chaque commit Git.

Travis-ci permet de lancer les tests sur une machine virtuelle, en ayant la possibilité de choisir une ou plusieurs
configurations logicielles dans le cadre desquelles les tests seront lancés.

-- Association du service Travis-ci à GitHub

Aller à l'adresse https://travis-ci.org/ et connectez-vous avec votre compte Github.
Choisissez ensuite Add new repository et sélectionner dans la liste le projet Git à tester.

-- Configuration

Créer le fichier .travis.yml à la racine du projet à tester :

language: php
php:
  - 5.4

https://travis-ci.org/
http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/travis-ci.png?id=slam5%3Atestsfonctionnels%3Aautomatises


Last update:
2019/08/31 14:37 slam5:testsfonctionnels:automatises http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443732390

http://slamwiki2.kobject.net/ Printed on 2026/02/14 20:12

  - 5.5
  - 5.6
addons:
  firefox: "41.0"
before_script:
 - mysql < app/database/helpdesk.sql -uroot
 - wget http://getcomposer.org/composer.phar
 - php composer.phar install
 - "sh -e /etc/init.d/xvfb start"
 - "export DISPLAY=:99.0"
 - "wget
http://selenium-release.storage.googleapis.com/2.45/selenium-server-standalone-2.45
.0.jar"
 - "java -jar selenium-server-standalone-2.45.0.jar > /dev/null &"
 - sleep 5
 - php -S 127.0.0.1:8090 app/.htrouter.php &
 - sleep 5
script: (cd tests; phpunit --configuration PHPunit.xml --debug)

Effectuer le push vers github, puis aller sur travis-ci pour observer le déroulement des tests :

Si tout est ok, la couleur devient verte, et vous avez le plaisir d'apposer le tag  dans lebuildbuild unknownunknown

README.md de votre projet GitHub.

http://slamwiki2.kobject.net/_detail/slam5/testsfonctionnels/travis-ci-report.png?id=slam5%3Atestsfonctionnels%3Aautomatises


2026/02/14 20:12 11/11 Tests fonctionnels automatisés & intégration continue

SlamWiki 2.1 - http://slamwiki2.kobject.net/

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443732390

Last update: 2019/08/31 14:37

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam5/testsfonctionnels/automatises?rev=1443732390

	Tests fonctionnels automatisés
	-- Mise en place des outils pour PHP
	-- Composer
	Installation

	-- PHPUnit et WebDriver

	-- PhpUnit
	-- Configuration
	-- Premier test
	-- Caractéristiques d'une classe de test PHPunit

	-- Selenium
	-- Configuration
	-- Selenium Server
	-- PHP webServer

	-- Préparation Selenium
	-- Tests Selenium
	-- Création des pages à tester (pour l'exemple)
	-- Création des tests


	-- Travis-ci
	-- Association du service Travis-ci à GitHub
	-- Configuration



