
2026/01/27 21:25 1/6 Next-auth

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Next-auth

Permet de gérer l'authentification sur une application nextJS en utilisant différent Provider. A l'avantage
d'utiliser la session nextJS.

Installation

npm install next-auth@beta @types/next-auth

Configuration

import NextAuth from "next-auth";
import CredentialsProvider from "next-auth/providers/credentials";
import HttpService from "@/services/HttpService";
import API_URLS from "@/constants/ApiUrls";
import { decodeJwt } from "jose";

interface AuthToken {
 accessToken: string;
 refreshToken: string;
 user: any;
}

async function refreshAccessToken(token: AuthToken) {
 try {
 const refreshedToken = await HttpService.post(API_URLS.refreshToken, {
 refreshToken: token.refreshToken,
 });

 if (!refreshedToken || !refreshedToken.accessToken) {
 throw new Error("Refresh token failed");
 }

 return {
 ...token,
 accessToken: refreshedToken.accessToken,
 accessTokenExpires: Date.now() + refreshedToken.expiresIn * 1000,
 refreshToken: refreshedToken.refreshToken ?? token.refreshToken,
 };
 } catch (error) {
 console.error("Erreur lors du rafraîchissement du token", error);
 return { ...token, error: "RefreshAccessTokenError" };
 }
}

// @ts-ignore
export const authConfig = {

Last update: 2025/08/12 02:35 web:framework:nextjs:nextauth http://slamwiki2.kobject.net/web/framework/nextjs/nextauth

http://slamwiki2.kobject.net/ Printed on 2026/01/27 21:25

 pages: {
 signIn: '/login',
 signOut: "/logout",
 },
 providers: [
 CredentialsProvider({
 id: "credentials",
 name: "Credentials",
 credentials: {
 username: { label: "Login", type: "text" },
 password: { label: "Password", type: "password" },
 },
 async authorize(credentials) {
 const resp = await HttpService.post(API_URLS.authLogin, {
 username: credentials.username,
 password: credentials.password,
 });

 if (resp.ok) {
 throw new Error("Invalid credentials");
 }
 const token=resp.data;
 const user = decodeJwt(token.accessToken);

 return {
 id: user.sub,
 name: user.name,
 email: user.email,
 role: user.role,
 accessToken: token.accessToken,
 //refreshToken: token.refreshToken,
 accessTokenExpires: Date.now() + token.expiresIn * 1000,
 };
 },
 }),
],
 callbacks: {
 async jwt({ token, user }) {
 if (user) {
 return {
 accessToken: user.accessToken,
 //refreshToken: user.refreshToken,
 accessTokenExpires: Date.now() + 1000 * 60 * 60, // 1h
 user: {
 id: user.id,
 name: user.name,
 email: user.email,
 role: user.role
 },
 };
 }

 if (Date.now() < token.accessTokenExpires) {
 return token;
 }

2026/01/27 21:25 3/6 Next-auth

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 return refreshAccessToken(token);
 },
 async session({ session, token }) {
 console.log("session in session method", session);
 console.log("token in session method", token);
 return {
 ...session,
 user: {
 ...session.user,
 id: token.user.id,
 name: token.user.name,
 email: token.user.email,
 accessToken: token.accessToken,
 //refreshToken: token.refreshToken,
 },
 };
 },
 },
 session: {
 strategy: 'jwt',
 },
 secret: process.env.NEXTAUTH_SECRET as string,
} satisfies NextAuthConfig;

//@ts-ignore
export const {handlers, auth, signIn, signOut} = NextAuth(authConfig);

Route api

Toutes les requêtes NextAuth passeront par cette route : src/app/api/auth/[…nextauth]/route.tsx

import {handlers} from "@/auth";
export const {GET, POST} = handlers;

Lib

Fichier utilitaire pour simplifier connexion et déconnexion dans src/lib/actions.ts:

'use server';
import {signIn, signOut} from "@/auth";

interface LoginFormValues {
 username: string;
 password: string;
 rememberMe?: boolean;
};
export const submitLogin = async (formData: LoginFormValues): Promise<any> => {

Last update: 2025/08/12 02:35 web:framework:nextjs:nextauth http://slamwiki2.kobject.net/web/framework/nextjs/nextauth

http://slamwiki2.kobject.net/ Printed on 2026/01/27 21:25

 await signIn('credentials', {...formData, redirectTo: '/', redirect: true});
};

export const submitLogout = async () => {
 await signOut({redirect: true, redirectTo: '/logout'});
};

LoginForm

Exemple de composant pour le login :

'use client';
import {Button, Checkbox, Form, Input} from "antd";
import {submitLogin} from "@/lib/actions";

export default function SignInComponent(){
 const onFinish = async (values: any) => {
 await submitLogin(values);
 };

 const onFinishFailed = (errorInfo: any) => {
 console.log('Failed:', errorInfo);
 };
 return
 <div>
 <Form
 name="basic"
 labelCol={{ span: 8 }}
 wrapperCol={{ span: 16 }}
 style={{ maxWidth: 600 }}
 initialValues={{ remember: true }}
 onFinish={onFinish}
 onFinishFailed={onFinishFailed}
 autoComplete="off"
 >
 <Form.Item
 label="Username"
 name="username"
 rules={[{ required: true, message: 'Please input your username!'
}]}
 >
 <Input />
 </Form.Item>

 <Form.Item
 label="Password"
 name="password"
 rules={[{ required: true, message: 'Please input your password!'
}]}
 >
 <Input.Password />
 </Form.Item>

2026/01/27 21:25 5/6 Next-auth

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 <Form.Item name="remember" valuePropName="checked" label={null}>
 <Checkbox>Remember me</Checkbox>
 </Form.Item>

 <Form.Item label={null}>
 <Button type="primary" htmlType="submit">
 Submit
 </Button>
 </Form.Item>
 </Form>
 </div>
}

Configuration

Dans le fichier .env ou .env.local, définir la variable NEXTAUTH_URL:

NEXTAUTH_URL=http://127.0.0.1:3000

Génération du secret pour encodage/décodage JWT :

npx auth secret

Le secret est généré et inséré dans le fichier .env.local.

Usage

Accès à la session nextAuth :

Côté serveur

import {auth} from "@/auth";

const session= await auth();
console.log(session.user); //user connecté

Côté client

'use client';
import {useSession} from "next-auth/react";

Last update: 2025/08/12 02:35 web:framework:nextjs:nextauth http://slamwiki2.kobject.net/web/framework/nextjs/nextauth

http://slamwiki2.kobject.net/ Printed on 2026/01/27 21:25

const userData=useSession();
console.log(userData.data?.user); //user connecté

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/framework/nextjs/nextauth

Last update: 2025/08/12 02:35

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/framework/nextjs/nextauth

	Next-auth
	Installation
	Configuration
	Route api
	Lib
	LoginForm
	Configuration
	Usage
	Côté serveur
	Côté client

