2026/02/18 22:52 1/3 Next-auth

Next-auth

Permet de gérer 'authentification sur une application next)S en utilisant différent Provider. A I'avantage
d'utiliser la session next]S.

Installation

npm install next-auth@beta @types/next-auth

Configuration

import NextAuth from "next-auth";

import CredentialsProvider from "next-auth/providers/credentials";
import HttpService from "@/services/HttpService";

import API URLS from "@/constants/ApiUrls";

import { decodeJdwt } from "jose";

interface AuthToken {
accessToken: string;
refreshToken: string;
user: any;

}

async function refreshAccessToken(token: AuthToken) {
try {
const refreshedToken = await HttpService.post(API URLS.refreshToken, {
refreshToken: token.refreshToken,

});
if (!'refreshedToken || !refreshedToken.accessToken) {
throw new Error("Refresh token failed");
}
return {
...token,
accessToken: refreshedToken.accessToken,
accessTokenExpires: Date.now() + refreshedToken.expiresIn * 1000,
refreshToken: refreshedToken.refreshToken ?? token.refreshToken,
b

} catch (error) {
console.error("Erreur lors du rafraichissement du token", error);
return { ...token, error: "RefreshAccessTokenError" };

}

// @ts-ignore
export const authConfig = {

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/08/12 web:framework:nextjs:nextauth http://slamwiki2.kobject.net/web/framework/nextjs/nextauth?rev=1742371444

02:35
pages: {
signIn: '/login',
signOut: "/logout",
}

providers: [
CredentialsProvider({
id: "credentials",
name: "Credentials",
credentials: {
username: { label: "Login", type: "text" },
password: { label: "Password", type: "password" },
3
async authorize(credentials) {
const resp = await HttpService.post(API URLS.authLogin, {
username: credentials.username,
password: credentials.password,

1)

if (resp.ok) {
throw new Error("Invalid credentials");
}
const token=resp.data;
const user = decodelwt(token.accessToken);

return {
id: user.sub,
name: user.name,
email: user.email,
role: user.role,
accessToken: token.accessToken,
//refreshToken: token.refreshToken,
accessTokenExpires: Date.now() + token.expiresIn * 1000,

}
1),
I
callbacks: {
async jwt({ token, user }) {
if (user) {
return {
accessToken: user.accessToken,
//refreshToken: user.refreshToken,
accessTokenExpires: Date.now() + 1000 * 60 * 60, // 1lh
user: {
id: user.id,
name: user.name,
email: user.email,
role: user.role
b
}
}

if (Date.now() < token.accessTokenExpires) {
return token;

}

http://slamwiki2.kobject.net/ Printed on 2026/02/18 22:52

2026/02/18 22:52 3/3 Next-auth

return refreshAccessToken(token);

b

async session({ session, token }) {
console.log("session in session method", session);
console.log("token in session method", token);

return {
...session,
user: {

...session.user,
id: token.user.id,
name: token.user.name,
email: token.user.email,
accessToken: token.accessToken,
//refreshToken: token.refreshToken,
}
I5
b
}
session: {
strategy: 'jwt',
}
secret: process.env.NEXTAUTH SECRET as string,
} satisfies NextAuthConfig;

//@ts-ignore
export const {handlers, auth, signIn, signOut} = NextAuth(authConfig);

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/framework/nextjs/nextauth?rev=1742371444

Last update: 2025/08/12 02:35

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/framework/nextjs/nextauth?rev=1742371444

	Next-auth
	Installation
	Configuration

