
2026/02/02 00:53 1/5 React

SlamWiki 2.1 - http://slamwiki2.kobject.net/

React

Installation

NodeJS requis

Standalone project

Création du projet :

npx create-react-app my-app

Eventuellement avec le support typeScript :

npx create-react-app my-app --template typescript

Démarrage du serveur

cd my-app
npx start

Composants

En React, tout est composant, et les composants peuvent être créés à partir de fonctions (JS), ou
de classes (ES6 ou TypeScript).

Fonctions

Un composant peut être créé à partir d'une fonction :

function Hello() {
 return (
 <div>
 <h1>props.message</h1>
 </div>
);
}

export default Hello;

https://nodejs.org/en/download/

Last update: 2024/04/10 09:39 web:framework:react http://slamwiki2.kobject.net/web/framework/react?rev=1712734784

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:53

Classe

Un composant peut être créé à partir d'une classe ES6 :

import React from "react";

class Hello extends React.Component {
 render() {
 return <h1>{this.props.message}</h1>;
 }
}
export default Hello;

Classe TypeScript

Un composant peut être créé à partir d'une classe TypeScript:

import React from "react";

export default class Hello extends React.Component<{message: string}> {
 render() {
 return (
 <h1>{this.props.message}</h1>
);
 }
}

La classe Hello déclare explicitement une propriété de nom message de type string.

Utilisation

Utilisation de Hello dans l'App, et initialisation en JSX de la prop message avec l'attribut message :

import Hello from './hello';

function App() {
 return (
 <div className="App">
 <Hello message="Hello World!"/>
 </div>
);
}

export default App;

2026/02/02 00:53 3/5 React

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Props et state

Sur un composant React :

Les propriétés sont accessibles avec l'objet props passé en paramètre (du constructeur ou de la
fonction)
Ces propriétés sont initialisées en JSX/HTML via les attributs de l'élément.
Elles sont immutables (en lecture seule).
Il est nécessaire d'utiliser l'objet state pour modifier l'état d'un composant.

Exemple classe TypeScript

import React from "react";

export default class Hello extends React.Component<{message:string},{msg: string}>
{
 constructor(props: {message:string}) {
 super(props);
 this.state = {msg: props.message};
 }
 handleChange = (event: React.ChangeEvent<HTMLInputElement>) => {
 this.setState({msg: event.target.value})
 }
 render() {
 return (
 <>
 <h1>{this.state.msg}</h1>
 <input value={this.state.msg} onChange={this.handleChange}/>
 < />
);
 }
}

Exemple fonction JavaScript

import {useState} from "react";

export default function Hola(props){
 const [message, setMessage] = useState(props.message);
 const handleChange = (e) => {
 setMessage(e.target.value);
 }
 return (
 <>
 <h1>{message}</h1>
 <input type="text" value={message} onChange={handleChange}/>
 < />
);
}

Last update: 2024/04/10 09:39 web:framework:react http://slamwiki2.kobject.net/web/framework/react?rev=1712734784

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:53

Http Wrapper

// This is a wrapper for the fetch API
export default class AppHttp {
 static async get(url, options) {
 const response = await fetch(url, options);
 return await response.json();
 }
 static async post(url, body, options) {
 const response = await fetch(url, {
 method: 'POST',
 body: JSON.stringify(body),
 ...options
 });
 return await response.json();
 }
 static async put(url, body, options) {
 const response = await fetch(url, {
 method: 'PUT',
 body: JSON.stringify(body),
 ...options
 });
 return await response.json();
 }
 static async delete(url, options) {
 const response = await fetch(url, {
 method: 'DELETE',
 ...options
 });
 return await response.json();
 }
}

Contexte

'use client';
import React, {createContext, ReactNode, useContext, useState} from 'react';

interface DemoContextType {
 data: number;
 setData: (d:number)=>void;
}

const DemoContext = createContext<demoContextType | undefined>(undefined);

export const demoProvider: React.FC<{ children: ReactNode }> = ({children}) => {
 const [data, setData] = useState<number>(0);

2026/02/02 00:53 5/5 React

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 return (
 <DemoContext.Provider value={{data, setData}}>
 {children}
 </DemoContext.Provider>
);
};

export const useDemo = (): DemoContextType => {
 const context = useContext(demoContext);
 if (!context) {
 throw new Error('usedemo must be used within a DemoProvider');
 }
 return context;
};

Composants

React-hook-form
React-query

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/framework/react?rev=1712734784

Last update: 2024/04/10 09:39

https://react-hook-form.com/
https://tanstack.com/query/v3/
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/framework/react?rev=1712734784

	React
	Installation
	Standalone project

	Composants
	Fonctions
	Classe
	Classe TypeScript
	Utilisation

	Props et state
	Exemple classe TypeScript
	Exemple fonction JavaScript
	Http Wrapper
	Contexte

	Composants

