
2026/02/17 13:55 1/9 Déploiement Springboot - Undertow

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Déploiement Springboot - Undertow

Via Gitlab CI/CD

Mise en place du déploiement automatique d'une application Springboot vers un serveur externe (VM mise à
disposition) via CI/CD Gitlab.

Configuration VM

Se connecter en root avec su :

su -l

Installer Java

Choisir une version compatible (supérieure ou égale à la verion java déclarée dans le pom.xml):

cd /tmp
wget https://download.oracle.com/java/17/latest/jdk-17_linux-x64_bin.deb
dpkg -i jdk-17_linux-x64_bin.deb
java -version

dépendance Undertow

Ajouter la dépendance Undetow dans pom.xml :

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-undertow</artifactId>
 </dependency>

Créer un service Undertow

Pour gérer Undertow plus facilement, créer un service Undertow :

nano /etc/systemd/system/undertow.service

[Unit]
Description=Mon app Undertow
After=network.target

Last update:
2025/08/12 02:35 web:framework:spring:deployment-undertow http://slamwiki2.kobject.net/web/framework/spring/deployment-undertow

http://slamwiki2.kobject.net/ Printed on 2026/02/17 13:55

[Service]
User=undertow
Group=undertow
ExecStart=/usr/bin/java -jar /opt/monApp.jar
WorkingDirectory=/opt/monApp/target
Restart=on-failure
RestartSec=10
Environment=SPRING_PROFILES_ACTIVE=prod # Variables d'environnement, si nécessaire

[Install]
WantedBy=multi-user.target

Recharger le deamon service pour prendre en compte le nouveau service :

systemctl daemon-reload

Démarrer Tomcat :

systemctl start undertow.service

Activer Undertow pour qu'il redémarre automatiquement à chaque reboot :

systemctl enable undertow.service

Afficher son statut :

systemctl status undertow.service

Mise en place CI/CD

gitlab-ci user sur la VM

Sur la VM :

Créer un utilisateur gitlab-ci
Faire en sorte qu'il puisse accéder à sudo
Changer son password : changeMyPassword
Permettre qu'il puisse s'authentifier en SSH avec login/password
Redémarrer SSH
Faire en sorte qu'il n'ait pas besoin de saisir un password en utilisant sudo avec les commandes mv, cp,
systemctl

adduser --quiet --shell $SHELL --disabled-password --gecos 'GitlabCI User' gitlab-
ci
usermod -a -G sudo gitlab-ci

2026/02/17 13:55 3/9 Déploiement Springboot - Undertow

SlamWiki 2.1 - http://slamwiki2.kobject.net/

echo 'gitlab-ci:changeMyPassword' | chpasswd
printf 'Match User gitlab-ci\n\tPasswordAuthentication yes\n' >>
/etc/ssh/sshd_config
systemctl restart sshd
echo 'gitlab-ci ALL=(ALL) NOPASSWD: /bin/mv, NOPASSWD: /usr/bin/systemctl,
NOPASSWD: /bin/cp' | sudo EDITOR='tee -a' visudo

Variable CI/CD sur Gitlab

Créer une variable dans Gitlab pour stocker le mot de passe de l'utilisateur gitlab-ci qui se connectera en SSH :

Dans Settings-CI/CD, créer la variable CI_USER_PASS :

Configuration du projet Springboot

Modifier pom.xml pour définir le nom du fichier WAR déployé :

 <build>
 <finalName>ssh-deploy</finalName>
 </build>

Vérifiez que le déploiement sera bien fait en WAR :

 <packaging>war</packaging>

Configuration Gitlab CI/CD

Créer ou modifier le fichier .gitlab-ci.yml :

stages:
 - build
 - deploy

maven-build:
 image: maven:3.9.5-amazoncorretto-17-debian
 stage: build
 script: "mvn package -B"
 artifacts:
 paths:
 - target/ssh-deploy.war

http://slamwiki2.kobject.net/_detail/web/framework/spring/pasted/20231121-183255.png?id=web%3Aframework%3Aspring%3Adeployment-undertow

Last update:
2025/08/12 02:35 web:framework:spring:deployment-undertow http://slamwiki2.kobject.net/web/framework/spring/deployment-undertow

http://slamwiki2.kobject.net/ Printed on 2026/02/17 13:55

deploy-master:
 variables:
 HOST: "149.202.94.223"
 PORT: "7839"
 USER: "gitlab-ci"
 WAR: "ssh-deploy.war"
 rules:
 - if: '$CI_COMMIT_BRANCH =~ /^main$/'
 before_script:
 - apt-get update -qq && apt-get install -y -qq sshpass sudo
 - echo "Host= $HOST"
 stage: deploy
 script:
 - sudo whoami # Vérifiez si sudo est disponible
 - which mv
 - sshpass -V
 - export SSHPASS=$CI_USER_PASS
 - sshpass -e scp -o StrictHostKeyChecking=no -P $PORT target/$WAR
$USER@$HOST:/home/$USER
 - sshpass -e ssh -tt -o StrictHostKeyChecking=no -p $PORT $USER@$HOST echo
$PATH
 - sshpass -e ssh -tt -o StrictHostKeyChecking=no -p $PORT $USER@$HOST sudo mv
/home/$USER/$WAR /opt/tomcat/webapps/paris-2024/ROOT.war
 - sshpass -e ssh -tt -o StrictHostKeyChecking=no -p $PORT $USER@$HOST sudo
systemctl restart tomcat.service

Il est conseillé de mettre les valeurs HOST, USER et PORT dans des variables Gitlab.

Vérifier que les 2 jobs sont bien lancés sur Gitlab à chaque commit sur la branche main, et que l'application est
bien déployée sur le serveur :

http://slamwiki2.kobject.net/_detail/web/framework/spring/pasted/20231121-214354.png?id=web%3Aframework%3Aspring%3Adeployment-undertow

2026/02/17 13:55 5/9 Déploiement Springboot - Undertow

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Configurations spécifiques dev/prod/test

Profiles

La création de profiles permet de gérer des configurations différentes, et des fichiers de configuration
spécifiques à chaque profile.

Ajouter la section profiles suivante au fichier pom.xml

 <profiles>
 <profile>
 <id>dev</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <activeProfile>dev</activeProfile>
 </properties>
 </profile>
 <profile>
 <id>prod</id>
 <properties>
 <activeProfile>prod</activeProfile>
 </properties>
 </profile>
 <profile>
 <id>test</id>
 <properties>
 <activeProfile>test</activeProfile>
 </properties>
 </profile>
 </profiles>

Configurations

Il est ensuite possible de créer des fichiers de configuration spécifiques à chaque profile, en plus du fichier de
configuration de base application.properties.

Configuration générale : application.properties

spring.profiles.active=@activeProfile@

Mustache Template engine
spring.mustache.prefix=classpath:/templates/
spring.mustache.suffix=.html

H2 Database + JPA
spring.datasource.username=sa
spring.datasource.password=

Last update:
2025/08/12 02:35 web:framework:spring:deployment-undertow http://slamwiki2.kobject.net/web/framework/spring/deployment-undertow

http://slamwiki2.kobject.net/ Printed on 2026/02/17 13:55

spring.datasource.driverClassName=org.h2.Driver
spring.jpa.hibernate.ddl-auto=update
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.H2Dialect
spring.jpa.properties.hibernate.globally_quoted_identifiers=true

spring.h2.console.enabled=true
spring.h2.console.settings.web-allow-others=true
spring.h2.console.path=/h2-console

servlet.context.path=/

Configuration spécifique au dev

spring.datasource.url=jdbc:h2:file:./data/paris-2024;DB_CLOSE_ON_EXIT=FALSE
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true

Configuration spécifique à la prod

La base de données H2 est localisée en dehors du dossier du projet (pour ne pas être modifiée par les
commits)
Les Logs SQL sont désactivés

La base de données (le fichier db) pourra être déposée dans le dossier préalablement créé sur la
VM : /data/h2/ via WinSCP.

spring.datasource.url=jdbc:h2:file:/data/h2/paris-2024;DB_CLOSE_ON_EXIT=FALSE
spring.jpa.show-sql=false
spring.jpa.properties.hibernate.format_sql=false

Configuration spécifique aux tests

spring.datasource.url=jdbc:h2:file:/home/runner/work/myparis/paris-2024/target/data
;DB_CLOSE_ON_EXIT=FALSE
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true

server.servlet.context-path=/

https://winscp.net/eng/download.php

2026/02/17 13:55 7/9 Déploiement Springboot - Undertow

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Prise en compte dans .gitlab-ci.yml

Génération du package en production

 stage: build
 script: "mvn clean package -P prod -DskipTests=true"

Génération du package pour les tests

 stage: test
 script: "mvn --batch-mode --update-snapshots verify -P test -DskipTests=false"

Déploiement avec variables

Il est parfois indispensable, pour des raisons de sécurité, de stocker certaines constantes dans les variables CI
de gitlab, pour les affecter au déploiement par l'intermédiaire de variables d'environnement plutôt que de les
mettre en dur dans le code :

Mots de passe (BDD)
Clé de sécurité (Chiffrement)

Configuration Tomcat sur VM

Il est nécessaire de modifier le service de démarrage de tomcat pour qu'il prenne en compte les variables
d'environnement (via le fichier setenv.sh), en utilisant catalina.sh comme script de démarrage au lieu de
startup.sh :

[Unit]
Description=Tomcat
After=network.target

[Service]
Type=simple

User=tomcat
Group=tomcat

Environment="JAVA_HOME=/usr/lib/jvm/jdk-17-oracle-x64"
Environment="JAVA_OPTS=-Djava.security.egd=file:///dev/urandom"
Environment="CATALINA_BASE=/opt/tomcat"
Environment="CATALINA_HOME=/opt/tomcat"
Environment="CATALINA_PID=/opt/tomcat/temp/tomcat.pid"
Environment="CATALINA_OPTS=-Xms512M -Xmx1024M -server -XX:+UseParallelGC"

ExecStart=/opt/tomcat/bin/catalina.sh run
ExecStop=/opt/tomcat/bin/catalina.sh stop

[Install]

Last update:
2025/08/12 02:35 web:framework:spring:deployment-undertow http://slamwiki2.kobject.net/web/framework/spring/deployment-undertow

http://slamwiki2.kobject.net/ Printed on 2026/02/17 13:55

WantedBy=multi-user.target

Recharger le service et redémarer le :

systemctl daemon-reload
systemctl start tomcat.service

Script de déploiement

Créer une variable CI_APP_KEY dans les variables CI de votre compte gitlab.

Le script de déploiement doit maintenant ajouter la variable d'environnement CI_APP_KEY dans le fichier
setenv.sh du serveur :

stages:
 - build
 - deploy

maven-build:
 image: maven:3.9.5-amazoncorretto-17-debian
 stage: build
 script: "mvn clean package -P prod -DskipTests=true"
 artifacts:
 paths:
 - target/paris-2024.war

deploy-master:
 variables:
 HOST: "149.202.94.223"
 PORT: "78xx"
 USER: "gitlab-ci"
 WAR: "paris-2024.war"
 SITE_LOCATION: "/opt/tomcat/webapps/paris-2024"
 rules:
 - if: '$CI_COMMIT_BRANCH =~ /^main$/'
 before_script:
 - apt-get update -qq && apt-get install -y -qq sshpass sudo
 - echo "Host= $HOST"
 stage: deploy
 script:
 - sudo whoami # Vérifiez si sudo est disponible
 - which mv
 - sshpass -V
 - export SSHPASS=$CI_USER_PASS
 - sshpass -e scp -o StrictHostKeyChecking=no -P $PORT target/$WAR
$USER@$HOST:/home/$USER
 - sshpass -e ssh -tt -o StrictHostKeyChecking=no -p $PORT $USER@$HOST echo
$PATH
 - sshpass -e ssh -tt -o StrictHostKeyChecking=no -p $PORT $USER@$HOST sudo mv
/home/$USER/$WAR $SITE_LOCATION/ROOT.war

2026/02/17 13:55 9/9 Déploiement Springboot - Undertow

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 - sshpass -e ssh -tt -o StrictHostKeyChecking=no -p $PORT $USER@$HOST "sudo
chmod 755 /opt/tomcat/bin/setenv.sh"
 - sshpass -e ssh -tt -o StrictHostKeyChecking=no -p $PORT $USER@$HOST "sudo sh
-c 'echo export CI_APP_KEY=$CI_APP_KEY >> /opt/tomcat/bin/setenv.sh'"
 - sshpass -e ssh -tt -o StrictHostKeyChecking=no -p $PORT $USER@$HOST sudo
systemctl restart tomcat.service

Utilisation de variable d'environnement

Pour utiliser la variable d'environnement CI_APP_KEY dans le projet SpringBoot :

application.properties

Ajouter la ligne suivante à application.properties :

spring.data.encryption.key=${CI_APP_KEY}

Utilisation en java

Dans un contrôleur, un service ou autre :

 @Value("${spring.data.encryption.key}")
 private String KEY;

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/framework/spring/deployment-undertow

Last update: 2025/08/12 02:35

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/framework/spring/deployment-undertow

	Déploiement Springboot - Undertow
	Via Gitlab CI/CD
	Configuration VM
	Installer Java
	dépendance Undertow
	Créer un service Undertow

	Mise en place CI/CD
	gitlab-ci user sur la VM
	Variable CI/CD sur Gitlab
	Configuration du projet Springboot
	Configuration Gitlab CI/CD

	Configurations spécifiques dev/prod/test
	Profiles
	Configurations
	Configuration générale : application.properties
	Configuration spécifique au dev
	Configuration spécifique à la prod
	Configuration spécifique aux tests
	Prise en compte dans .gitlab-ci.yml

	Déploiement avec variables
	Configuration Tomcat sur VM
	Script de déploiement
	Utilisation de variable d'environnement
	application.properties
	Utilisation en java

