2026/01/27 21:13 1/5 Security + JWT

Security + JWT

Installation

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-oauth2-resource-server</artifactId>
</dependency>

Configuration

@Configuration
@EnableWebSecurity
@EnableMethodSecurity
class SecurityConfig {

@Autowired
lateinit var rsaKeyConfigProperties: RsaKeyConfigProperties

@Autowired
lateinit var userDetailsService: JpaUserDetailsService

@Value("\${cors.allowedOrigins}")
private lateinit var allowedOrigins: String

@Bean

fun authManager(): AuthenticationManager {
val authProvider = DaoAuthenticationProvider()
authProvider.setUserDetailsService(userDetailsService)
authProvider.setPasswordEncoder(passwordEncoder())
return ProviderManager(authProvider)

@Bean
@Throws (Exception::class)
fun filterChain(http: HttpSecurity, introspector: HandlerMappingIntrospector?):
SecurityFilterChain {
return http
.csrf { csrf: CsrfConfigurer<HttpSecurity> ->
csrf.disable()

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/08/12 02:35 web:framework:spring:jwt http://slamwiki2.kobject.net/web/framework/spring/jwt

}

.cors(Customizer.withDefaults())

.authorizeHttpRequests { auth ->
auth.requestMatchers("/error/**") .permitAll()
auth.requestMatchers("/api/auth/**") . .permitAll()
auth.requestMatchers("/h2-console/**").permitAll()
auth.requestMatchers("/swagger-ui/**").permitAll()
auth.requestMatchers("/api-docs/**").permitAll()
auth.requestMatchers("/uploads/**").permitAll()
auth.requestMatchers("/images/**").permitAll()

auth.requestMatchers("/api/**").authenticated()

auth.anyRequest().authenticated()
}.headers { headers ->
headers.frameOptions { it.disable() }
}
.sessionManagement { s: SessionManagementConfigurer<HttpSecurity?> ->
s.sessionCreationPolicy(
SessionCreationPolicy.STATELESS
)
}
.0auth2ResourceServer { oauth2:
OAuth2ResourceServerConfigurer<HttpSecurity?> ->
oauth2.jwt { jwt ->
jwt.decoder(
jwtDecoder()
)
}
}

.userDetailsService(userDetailsService)
.httpBasic(Customizer.withDefaults())
.build()

}

@Bean
fun jwtDecoder(): JwtDecoder {
return
NimbusJwtDecoder.withPublicKey (rsaKeyConfigProperties.publicKey) .build()

}

@Bean
fun jwtEncoder(): JwtEncoder {
val jwk: JwK =

RSAKey.Builder(rsakKeyConfigProperties.publicKey).privateKey(rsaKeyConfigProperties.
privateKey).build()

val jwks: JWKSource<SecurityContext> = ImmutableJWKSet (JWKSet (jwk))
return NimbusJwtEncoder (jwks)

}

@Bean
fun passwordEncoder(): PasswordEncoder {
return BCryptPasswordEncoder()

}

http://slamwiki2.kobject.net/ Printed on 2026/01/27 21:13

2026/01/27 21:13 3/5 Security + JWT

@Bean

fun corsConfigurationSource(): CorsConfigurationSource {
val source = UrlBasedCorsConfigurationSource()
val config = CorsConfiguration()
config.allowedOrigins = allowedOrigins.split(",")
config.allowedMethods = listOf("GET", "POST", "PUT", "DELETE", "OPTIONS",

"PATCH", "HEAD")

config.allowedHeaders listOf("*")
config.allowCredentials = true
source.registerCorsConfiguration("/api/**", config)
return source

companion object {
private val log: Logger =
LoggerFactory.getLogger(SecurityConfig::class.java)

}
}

RSA config

@ConfigurationProperties(prefix = "rsa")
@JvmRecord

data class RsaKeyConfigProperties(val publicKey: RSAPublicKey, val privateKey:
RSAPrivateKey)

Génération des clés RSA

Avec git bash :

genpkey -algorithm RSA -out private.pem -pkeyopt rsa keygen bits:2048

openssl rsa -in private.pem -pubout -out public.pem

AuthUser

class AuthUser(val user: User) : UserDetails {

override fun getAuthorities(): MutableCollection<out GrantedAuthority> {
return mutableListOf(SimpleGrantedAuthority("ROLE ${user.role.name}"))
}

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/08/12 02:35 web:framework:spring:jwt http://slamwiki2.kobject.net/web/framework/spring/jwt

override fun getPassword(): String?

user.password

override fun getUsername(): String? user.username

override fun isAccountNonExpired(): Boolean = true
override fun isAccountNonLocked(): Boolean = true
override fun isCredentialsNonExpired(): Boolean = true

override fun isEnabled(): Boolean = user.enabled

Services

@Service
class JpaUserDetailsService(

val userRepository: UserRepository,

val logEventRepository: LogEventRepository,
) : UserDetailsService {

@Throws (UsernameNotFoundException::class)
@Transactional
override fun loadUserByUsername(usernameOrEmail: String): UserDetails {
val user: User = userRepository
.findByUsernameOrEmail (usernameOrEmail, usernameOrEmail)
.orElseThrow { UsernameNotFoundException("User name or email not found:
$usernameOrEmail") }
return AuthUser(user)

}

@Service
class AuthService {

@Autowired
lateinit var jwtEncoder: JwtEncoder

@Autowired
lateinit var JwtDecoder: JwtDecoder

@Autowired
lateinit var passwordEncoder: PasswordEncoder

@Autowired
lateinit var userRepository: UserRepository

fun generateToken(authentication: Authentication): String {
val now = Instant.now()

http://slamwiki2.kobject.net/ Printed on 2026/01/27 21:13

2026/01/27 21:13 5/5 Security + JWT

val scope: String = authentication.getAuthorities()
.stream()
.map { obj: GrantedAuthority -> obj.authority }
.collect(Collectors.joining(" "))
val user = (authentication.principal as AuthUser).user
val claims = JwtClaimsSet.builder()
.issuer("self")
.issuedAt (now)
.expiresAt(now.plus(10, ChronoUnit.HOURS))
.subject(authentication.getName())
.claim("scope", scope)
.claim("sub", user.id)
.claim("role", user.role.name)
.claim("username", user.username)
.build()

return jwtEncoder.encode(JwtEncoderParameters.from(claims)).tokenValue

}

fun getActiveUser(token: String): User {
val claims = JwtDecoder.decode(token).claims
val userId = claims["sub"] as UUID
return userRepository.findById(userId).orElseThrow { RuntimeException("User
not found") }
}

fun hashPassword(password: String): String {
if (!isBCryptHash(password)) {
return passwordEncoder.encode(password)

}

return password

}

fun isBCryptHash(password: String): Boolean {
return password.matches (Regex("~\\$2[aby]\\$\\d{2}\\$[./A-Za-z0-9]1{53}$"))
}

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/framework/spring/jwt

Last update: 2025/08/12 02:35

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/framework/spring/jwt

	Security + JWT
	Installation
	Configuration
	RSA config
	Génération des clés RSA
	AuthUser

	Services

