
2026/01/28 23:29 1/5 Security + JWT

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Security + JWT

Installation

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-resource-server</artifactId>
 </dependency>

Configuration

@Configuration
@EnableWebSecurity
@EnableMethodSecurity
class SecurityConfig {

 @Autowired
 lateinit var rsaKeyConfigProperties: RsaKeyConfigProperties

 @Autowired
 lateinit var userDetailsService: JpaUserDetailsService

 @Value("\${cors.allowedOrigins}")
 private lateinit var allowedOrigins: String

 @Bean
 fun authManager(): AuthenticationManager {
 val authProvider = DaoAuthenticationProvider()
 authProvider.setUserDetailsService(userDetailsService)
 authProvider.setPasswordEncoder(passwordEncoder())
 return ProviderManager(authProvider)
 }

 @Bean
 @Throws(Exception::class)
 fun filterChain(http: HttpSecurity, introspector: HandlerMappingIntrospector?):
SecurityFilterChain {
 return http
 .csrf { csrf: CsrfConfigurer<HttpSecurity> ->
 csrf.disable()

Last update: 2025/08/12 02:35 web:framework:spring:jwt http://slamwiki2.kobject.net/web/framework/spring/jwt?rev=1742222890

http://slamwiki2.kobject.net/ Printed on 2026/01/28 23:29

 }
 .cors(Customizer.withDefaults())
 .authorizeHttpRequests { auth ->
 auth.requestMatchers("/error/**").permitAll()
 auth.requestMatchers("/api/auth/**").permitAll()
 auth.requestMatchers("/h2-console/**").permitAll()
 auth.requestMatchers("/swagger-ui/**").permitAll()
 auth.requestMatchers("/api-docs/**").permitAll()
 auth.requestMatchers("/uploads/**").permitAll()
 auth.requestMatchers("/images/**").permitAll()

 auth.requestMatchers("/api/**").authenticated()

 auth.anyRequest().authenticated()
 }.headers { headers ->
 headers.frameOptions { it.disable() }
 }
 .sessionManagement { s: SessionManagementConfigurer<HttpSecurity?> ->
 s.sessionCreationPolicy(
 SessionCreationPolicy.STATELESS
)
 }
 .oauth2ResourceServer { oauth2:
OAuth2ResourceServerConfigurer<HttpSecurity?> ->
 oauth2.jwt { jwt ->
 jwt.decoder(
 jwtDecoder()
)
 }
 }
 .userDetailsService(userDetailsService)
 .httpBasic(Customizer.withDefaults())
 .build()
 }

 @Bean
 fun jwtDecoder(): JwtDecoder {
 return
NimbusJwtDecoder.withPublicKey(rsaKeyConfigProperties.publicKey).build()
 }

 @Bean
 fun jwtEncoder(): JwtEncoder {
 val jwk: JWK =
RSAKey.Builder(rsaKeyConfigProperties.publicKey).privateKey(rsaKeyConfigProperties.
privateKey).build()

 val jwks: JWKSource<SecurityContext> = ImmutableJWKSet(JWKSet(jwk))
 return NimbusJwtEncoder(jwks)
 }

 @Bean
 fun passwordEncoder(): PasswordEncoder {
 return BCryptPasswordEncoder()
 }

2026/01/28 23:29 3/5 Security + JWT

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 @Bean
 fun corsConfigurationSource(): CorsConfigurationSource {
 val source = UrlBasedCorsConfigurationSource()
 val config = CorsConfiguration()
 config.allowedOrigins = allowedOrigins.split(",")
 config.allowedMethods = listOf("GET", "POST", "PUT", "DELETE", "OPTIONS",
"PATCH", "HEAD")
 config.allowedHeaders = listOf("*")
 config.allowCredentials = true
 source.registerCorsConfiguration("/api/**", config)
 return source
 }

 companion object {

 private val log: Logger =
LoggerFactory.getLogger(SecurityConfig::class.java)
 }
}

RSA config

@ConfigurationProperties(prefix = "rsa")
@JvmRecord
data class RsaKeyConfigProperties(val publicKey: RSAPublicKey, val privateKey:
RSAPrivateKey)

AuthUser

class AuthUser(val user: User) : UserDetails {

 override fun getAuthorities(): MutableCollection<out GrantedAuthority> {
 return mutableListOf(SimpleGrantedAuthority("ROLE_${user.role.name}"))
 }

 override fun getPassword(): String? = user.password

 override fun getUsername(): String? = user.username

 override fun isAccountNonExpired(): Boolean = true

 override fun isAccountNonLocked(): Boolean = true

 override fun isCredentialsNonExpired(): Boolean = true

 override fun isEnabled(): Boolean = user.enabled
}

Last update: 2025/08/12 02:35 web:framework:spring:jwt http://slamwiki2.kobject.net/web/framework/spring/jwt?rev=1742222890

http://slamwiki2.kobject.net/ Printed on 2026/01/28 23:29

Services

@Service
class JpaUserDetailsService(
 val userRepository: UserRepository,
 val logEventRepository: LogEventRepository,
) : UserDetailsService {

 @Throws(UsernameNotFoundException::class)
 @Transactional
 override fun loadUserByUsername(usernameOrEmail: String): UserDetails {
 val user: User = userRepository
 .findByUsernameOrEmail(usernameOrEmail, usernameOrEmail)
 .orElseThrow { UsernameNotFoundException("User name or email not found:
$usernameOrEmail") }
 return AuthUser(user)
 }
}

@Service
class AuthService {

 @Autowired
 lateinit var jwtEncoder: JwtEncoder

 @Autowired
 lateinit var JwtDecoder: JwtDecoder

 @Autowired
 lateinit var passwordEncoder: PasswordEncoder

 @Autowired
 lateinit var userRepository: UserRepository

 fun generateToken(authentication: Authentication): String {
 val now = Instant.now()

 val scope: String = authentication.getAuthorities()
 .stream()
 .map { obj: GrantedAuthority -> obj.authority }
 .collect(Collectors.joining(" "))
 val user = (authentication.principal as AuthUser).user
 val claims = JwtClaimsSet.builder()
 .issuer("self")
 .issuedAt(now)
 .expiresAt(now.plus(10, ChronoUnit.HOURS))
 .subject(authentication.getName())
 .claim("scope", scope)
 .claim("sub", user.id)
 .claim("role", user.role.name)

2026/01/28 23:29 5/5 Security + JWT

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 .claim("username", user.username)
 .build()

 return jwtEncoder.encode(JwtEncoderParameters.from(claims)).tokenValue
 }

 fun getActiveUser(token: String): User {
 val claims = JwtDecoder.decode(token).claims
 val userId = claims["sub"] as UUID
 return userRepository.findById(userId).orElseThrow { RuntimeException("User
not found") }
 }

 fun hashPassword(password: String): String {
 if (!isBCryptHash(password)) {
 return passwordEncoder.encode(password)
 }
 return password
 }

 fun isBCryptHash(password: String): Boolean {
 return password.matches(Regex("^\\$2[aby]\\$\\d{2}\\$[./A-Za-z0-9]{53}$"))
 }

}

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/framework/spring/jwt?rev=1742222890

Last update: 2025/08/12 02:35

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/framework/spring/jwt?rev=1742222890

	Security + JWT
	Installation
	Configuration
	RSA config
	AuthUser

	Services

