2026/01/11 15:56 1/9 Spring OAuth2

Spring OAuth2

Mise en place d'Oauth2 avec Spring.
OAuth?2 est un protocole d'autorisation et non d'authentification. Il permet de vérifier I'acces a des ressources.

OAuth? utilise des jetons, matérialisant I'acces autorisé. L'avantage des tokens JWT (JSON Web Token) est qu'ils
permettent de mémoriser de maniére sécurisée des informations dans le jeton délivré.

Dépendances

A ajouter dans pom.xml

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-oauth2-resource-server</artifactId>
</dependency>

Sécurisation

Les clés RSA (publique et privée) sont utilisées dans le contexte d'un serveur OAuth 2 pour sécuriser les
échanges de données entre les différentes parties impliquées dans le processus d'authentification et
d'autorisation.

Génération des clés

Générer une clé publique et une privée avec openSSL (a installer éventuellement) :
Créer un dossier certs dans le dossier resources de votre projet Spring.

Créer la clé privée dans certs

openssl genpkey -algorithm RSA -out private-key.pem

Extraire la clé publique a partir de la clé privée :

openssl rsa -pubout -in private-key.pem -out public-key.pem

Convertir la clé privée au format PKCS :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://oauth.net/2/

Last update: 2024/04/16 13:58 web:framework:spring:oauth2 http://slamwiki2.kobject.net/web/framework/spring/oauth2

openssl pkcs8 -topk8 -inform PEM -outform PEM -in private-key.pem -out private-key-
used.pem -nocrypt

La clé privée est gardée secrete et ne devra jamais étre partagée, tandis que la clé publique pourra étre
distribuée librement.

Usage des clés RSA
Signature des JWT (JSON Web Tokens)

Lorsqu'un client demande un jeton d'accés au serveur OAuth, celui-ci génére un JWT contenant des informations
telles que l'identifiant du client, les autorisations demandées et une empreinte temporelle. Ce JWT est signé a
I'aide de la clé privée du serveur OAuth, garantissant ainsi son authenticité et son intégrité.

Vérification des JWT

Lorsqu'un jeton d'accés est présenté pour accéder a une ressource protégée, le serveur OAuth vérifie la
signature du JWT a l'aide de la clé publiqgue associée. Si la signature est valide, cela prouve que le jeton d'accés
a été émis par le serveur OAuth et qu'il n'a pas été modifié depuis sa création.

En résumé, les clés RSA (publique et privée) sont utilisées dans le cadre d'OAuth 2 pour garantir I'authenticité,
I'intégrité et la sécurité des échanges de jetons d'acces entre les clients et le serveur OAuth.

Intégration RSA/Spring

Créer une classe pour gérer les properties a ajouter pour stocker les 2 clés :

Dans un package security a créer :

import org.springframework.boot.context.properties.ConfigurationProperties
import java.security.interfaces.RSAPrivateKey
import java.security.interfaces.RSAPublicKey

@ConfigurationProperties(prefix = "rsa")

@JvmRecord

data class RsaKeyConfigProperties(val publicKey: RSAPublicKey, val privateKey:
RSAPrivateKey)

Activer cette classe de propriétés directement sur la classe de votre application Spring :

import fr.zerp.api.security.RsaKeyConfigProperties

import org.springframework.boot.autoconfigure.SpringBootApplication

import org.springframework.boot.context.properties.EnableConfigurationProperties
import org.springframework.boot.runApplication

http://slamwiki2.kobject.net/ Printed on 2026/01/11 15:56

2026/01/11 15:56 3/9 Spring OAuth2

@SpringBootApplication
@EnableConfigurationProperties (RsaKeyConfigProperties::class)
class MyApplication

Ajouter les 2 clés a application.properties :

#IWT
rsa.private-key=classpath:certs/private-key-used.pem
rsa.public-key=classpath:certs/public-key.pem

Services et authentification

AuthUser

Créer une classe AuthUser encapsulant un User et implémentant I'interface UserDetails de spring :

class AuthUser(user: User) : UserDetails {
val user: User = user

override fun getAuthorities(): MutableCollection<out GrantedAuthority> {
return mutableListOf(SimpleGrantedAuthority ("ROLE USER"))

}

override fun getPassword(): String? user.password

override fun getUsername(): String? user.username
override fun isAccountNonExpired(): Boolean = true
override fun isAccountNonLocked(): Boolean = true

override fun isCredentialsNonExpired(): Boolean = true

override fun isEnabled(): Boolean = user.enabled

UserRepository

Modifier votre UserRepository pour qu'il permette de rechercher un utilisateur par son login/username ou
email (a vous de choisir) :

@RepositoryRestResource(collectionResourceRel = "users", path = "users")
interface UserRepository : JpaRepository<User, UUID> {
fun findByUsernameOrEmail (username: String, email: String): Optional<User>

}

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2024/04/16 13:58 web:framework:spring:oauth2 http://slamwiki2.kobject.net/web/framework/spring/oauth2

UserDetailsService

import org.springframework.beans.factory.annotation.Autowired

import org.springframework.security.core.userdetails.UserDetails

import org.springframework.security.core.userdetails.UserDetailsService

import org.springframework.security.core.userdetails.UsernameNotFoundException
import org.springframework.stereotype.Service

@Service
class JpaUserDetailsService : UserDetailsService {

@Autowired
lateinit var userRepository: UserRepository

@Throws (UsernameNotFoundException::class)
override fun loadUserByUsername(usernameOrEmail: String): UserDetails {
val user: AuthUser = userRepository
.findByUsernameOrEmail (usernameOrEmail, usernameOrEmail)
.map { AuthUser(it) }
.orElseThrow { UsernameNotFoundException("User name or email not found:
$usernameOrEmail") }

return user

AuthService

import org.springframework.beans.factory.annotation.Autowired
import org.springframework.security.core.Authentication

import org.springframework.security.core.GrantedAuthority

import org.springframework.security.crypto.password.PasswordEncoder
import org.springframework.security.oauth2.jwt.JwtClaimsSet

import org.springframework.security.oauth2.jwt.JwtDecoder

import org.springframework.security.oauth2.jwt.JwtEncoder

import org.springframework.security.oauth2.jwt.JwtEncoderParameters
import org.springframework.stereotype.Service

import java.time.Instant

import java.time.temporal.ChronoUnit

import java.util.*

import java.util.stream.Collectors

@Service
class AuthService {

@Autowired
private val jwtEncoder: JwtEncoder? = null

http://slamwiki2.kobject.net/ Printed on 2026/01/11 15:56

2026/01/11 15:56 5/9 Spring OAuth2

@Autowired
lateinit var JwtDecoder: JwtDecoder

@Autowired
private val passwordEncoder: PasswordEncoder? = null

@Autowired
private val userRepository: UserRepository? = null

fun generateToken(authentication: Authentication): String {

}

val now = Instant.now()

val scope: String = authentication.getAuthorities()
.stream()
.map { obj: GrantedAuthority -> obj.authority }
.collect(Collectors.joining(" "))

val claims = JwtClaimsSet.builder()
.issuer("self")
.issuedAt (now)
.expiresAt(now.plus (10, ChronoUnit.HOURS))
.subject(authentication.getName())
.claim("scope", scope)
.claim("user_id", (authentication.principal as AuthUser).user.id)
.build()

return jwtEncoder!!.encode(JwtEncoderParameters.from(claims)).tokenValue

//Exemple de récupération de données dans le token JIWT
fun getActiveUser(token: String): User {

val claims = JwtDecoder.decode(token).claims
val userId = claims["user id"] as UUID
return userRepository!!.findById(userId).orElseThrow {

RuntimeException("User not found") }

}
}

Configuration

import
import
import
import
import
import
import
import
import
import
import
import
import

com.nimbusds. jose.jwk.JWK

com.nimbusds. jose.jwk.JIWKSet
com.nimbusds. jose. jwk.RSAKey
com.nimbusds.jose.jwk.source.ImmutableJWKSet
com.nimbusds. jose. jwk.source.JWKSource
com.nimbusds.jose.proc.SecurityContext
fr.zerp.api.security.JpaUserDetailsService
fr.zerp.api.security.RsaKeyConfigProperties
org.slf4j.Logger

org.slf4j.LoggerFactory
org.springframework.beans.factory.annotation.Autowired
org.springframework.context.annotation.Bean
org.springframework.context.annotation.Configuration

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2024/04/16 13:58

web:framework:spring:oauth2 http://slamwiki2.kobject.net/web/framework/spring/oauth2

import
import
import
import
import

org.springframework.security.config.

urity

import org.springframework.security.

import

org.springframework.

import

org.springframework.

import

org.springframework.

import

org.springframework.

figurer
import

org.springframework.security.config.

org.
org.
org.
org.

springframework.
springframework.
springframework.
springframework.

security.
security.
security.
security.

security.config.
security.config.
security.config.

security.config.

ce.0Auth2ResourceServerConfigurer

import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
org.
org.
org.

springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework

@Configuration
@EnableWebSecurity
@EnableMethodSecurity
class SecurityConfig {

@Autowired
lateinit var rsaKeyConfigProperties: RsaKeyConfigProperties

@Autowired
lateinit var userDetailsService: JpaUserDetailsService

@Be

fun authManager():

@Be

an

val authProvider =

an

security.
security.
security.
security.
security.
security.
security.
security.
.web.servlet.handler.HandlerMappingIntrospector

authentication.AuthenticationManager
authentication.ProviderManager
authentication.dao.DaocAuthenticationProvider

config.

Customizer

annotation.method.configuration.EnableMethodSec

config.

annotation.web.builders.HttpSecurity

annotation.web.configuration.EnableWebSecurity

annotation.web.configurers.CorsConfigurer

annotation.web.configurers.CsrfConfigurer

annotation.web.configurers.SessionManagementCon

annotation.web.configurers.oauth2.server.resour

config.
.bcrypt.BCryptPasswordEncoder

crypto

crypto.
.jwt.JwtDecoder
oauth2.
oauth2.
oauth2.

oauth2

http.SessionCreationPolicy
password.PasswordEncoder
jwt.JwtEncoder

jwt.NimbusJwtDecoder
jwt.NimbusJwtEncoder

web.SecurityFilterChain

AuthenticationManager {

DaoAuthenticationProvider()
authProvider.setUserDetailsService(userDetailsService)
authProvider.setPasswordEncoder(passwordEncoder())
return ProviderManager (authProvider)

@Throws (Exception::class)
fun filterChain(http: HttpSecurity, introspector: HandlerMappingIntrospector?):
SecurityFilterChain {

http://slamwiki2.kobject.net/

Printed on 2026/01/11 15:56

2026/01/11 15:56 7/9 Spring OAuth2

return http

.csrf { csrf: CsrfConfigurer<HttpSecurity> ->
csrf.disable()

}

.cors { cors: CorsConfigurer<HttpSecurity> -> cors.disable() }

.authorizeHttpRequests { auth ->
auth.requestMatchers("/error/**").permitAll()
auth.requestMatchers("/api/auth/**") . permitAll()
auth.requestMatchers("/h2-console/**") .permitAl1l()
auth.anyRequest().authenticated()

}.headers { headers ->
headers.frameOptions { it.sameOrigin() }

}

.sessionManagement { s: SessionManagementConfigurer<HttpSecurity?> ->
s.sessionCreationPolicy(

SessionCreationPolicy.STATELESS

)

}

.0auth2ResourceServer { oauth2:
OAuth2ResourceServerConfigurer<HttpSecurity?> ->
oauth2.jwt { jwt ->
jwt.decoder(
jwtDecoder()
)
}
}
.userDetailsService(userDetailsService)
.httpBasic(Customizer.withDefaults())
.build()

}

@Bean
fun jwtDecoder(): JwtDecoder {
return
NimbusJwtDecoder.withPublicKey(rsaKeyConfigProperties.publicKey) .build()

}

@Bean
fun jwtEncoder(): JwtEncoder {
val jwk: JWK =

RSAKey.Builder(rsakKeyConfigProperties.publicKey).privateKey(rsaKeyConfigProperties.
privateKey) .build()

val jwks: JWKSource<SecurityContext> = ImmutableJWKSet (JWKSet (jwk))
return NimbusJwtEncoder (jwks)

}

@Bean
fun passwordEncoder(): PasswordEncoder {
return BCryptPasswordEncoder()

}

companion object {
private val log: Logger =
LoggerFactory.getLogger(SecurityConfig::class.java)

}

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2024/04/16 13:58 web:framework:spring:oauth2 http://slamwiki2.kobject.net/web/framework/spring/oauth2

}

Authentification

DTO

class AuthDTO {
@JvmRecord
data class LoginRequest(val username: String, val password: String)

@JvmRecord
data class Response(val message: String, val token: String)

Controller

@RestController
@RequestMapping("/api/auth")
@Validated

class AuthController {

@Autowired
lateinit var authService: AuthService

@Autowired
lateinit var authenticationManager: AuthenticationManager

@PostMapping("/login")
@Throws (IllegalAccessException::class)
fun login(@RequestBody userLogin: AuthDTO.LoginRequest): ResponseEntity<*> {
val authentication: Authentication =
authenticationManager
.authenticate(
UsernamePasswordAuthenticationToken (
userLogin.username,
userLogin.password
)
)
SecurityContextHolder.getContext().authentication = authentication
val userDetails = authentication.getPrincipal() as AuthUser
log.info("Token requested for user :{}", authentication.getAuthorities())
val token = authService.generateToken(authentication)
val response: AuthDTO.Response = AuthDTO.Response("User logged in
successfully"”, token)
return ResponseEntity.ok<Any>(response)

}

companion object {
private val log: Logger =

http://slamwiki2.kobject.net/ Printed on 2026/01/11 15:56

2026/01/11 15:56 9/9 Spring OAuth2

LoggerFactory.getLogger (AuthController::class.java)
}
}

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/framework/spring/oauth2

Last update: 2024/04/16 13:58

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/framework/spring/oauth2

	Spring OAuth2
	Dépendances
	Sécurisation
	Génération des clés
	Usage des clés RSA
	Signature des JWT (JSON Web Tokens)
	Vérification des JWT

	Intégration RSA/Spring
	Services et authentification
	AuthUser
	UserRepository
	UserDetailsService
	AuthService

	Configuration
	Authentification
	DTO
	Controller

