
2026/01/11 15:56 1/9 Spring OAuth2

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Spring OAuth2

Mise en place d'Oauth2 avec Spring.

OAuth2 est un protocole d'autorisation et non d'authentification. Il permet de vérifier l'accès à des ressources.

OAuth2 utilise des jetons, matérialisant l'accès autorisé. L'avantage des tokens JWT (JSON Web Token) est qu'ils
permettent de mémoriser de manière sécurisée des informations dans le jeton délivré.

Dépendances

A ajouter dans pom.xml

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-resource-server</artifactId>
 </dependency>

Sécurisation

Les clés RSA (publique et privée) sont utilisées dans le contexte d'un serveur OAuth 2 pour sécuriser les
échanges de données entre les différentes parties impliquées dans le processus d'authentification et
d'autorisation.

Génération des clés

Générer une clé publique et une privée avec openSSL (à installer éventuellement) :

Créer un dossier certs dans le dossier resources de votre projet Spring.

Créer la clé privée dans certs

openssl genpkey -algorithm RSA -out private-key.pem

Extraire la clé publique à partir de la clé privée :

openssl rsa -pubout -in private-key.pem -out public-key.pem

Convertir la clé privée au format PKCS :

https://oauth.net/2/

Last update: 2024/04/16 13:58 web:framework:spring:oauth2 http://slamwiki2.kobject.net/web/framework/spring/oauth2

http://slamwiki2.kobject.net/ Printed on 2026/01/11 15:56

openssl pkcs8 -topk8 -inform PEM -outform PEM -in private-key.pem -out private-key-
used.pem -nocrypt

La clé privée est gardée secrète et ne devra jamais être partagée, tandis que la clé publique pourra être
distribuée librement.

Usage des clés RSA

Signature des JWT (JSON Web Tokens)

Lorsqu'un client demande un jeton d'accès au serveur OAuth, celui-ci génère un JWT contenant des informations
telles que l'identifiant du client, les autorisations demandées et une empreinte temporelle. Ce JWT est signé à
l'aide de la clé privée du serveur OAuth, garantissant ainsi son authenticité et son intégrité.

Vérification des JWT

Lorsqu'un jeton d'accès est présenté pour accéder à une ressource protégée, le serveur OAuth vérifie la
signature du JWT à l'aide de la clé publique associée. Si la signature est valide, cela prouve que le jeton d'accès
a été émis par le serveur OAuth et qu'il n'a pas été modifié depuis sa création.

En résumé, les clés RSA (publique et privée) sont utilisées dans le cadre d'OAuth 2 pour garantir l'authenticité,
l'intégrité et la sécurité des échanges de jetons d'accès entre les clients et le serveur OAuth.

Intégration RSA/Spring

Créer une classe pour gérer les properties à ajouter pour stocker les 2 clés :

Dans un package security à créer :

import org.springframework.boot.context.properties.ConfigurationProperties
import java.security.interfaces.RSAPrivateKey
import java.security.interfaces.RSAPublicKey

@ConfigurationProperties(prefix = "rsa")
@JvmRecord
data class RsaKeyConfigProperties(val publicKey: RSAPublicKey, val privateKey:
RSAPrivateKey)

Activer cette classe de propriétés directement sur la classe de votre application Spring :

import fr.zerp.api.security.RsaKeyConfigProperties
import org.springframework.boot.autoconfigure.SpringBootApplication
import org.springframework.boot.context.properties.EnableConfigurationProperties
import org.springframework.boot.runApplication

2026/01/11 15:56 3/9 Spring OAuth2

SlamWiki 2.1 - http://slamwiki2.kobject.net/

@SpringBootApplication
@EnableConfigurationProperties(RsaKeyConfigProperties::class)
class MyApplication

Ajouter les 2 clés à application.properties :

#JWT
rsa.private-key=classpath:certs/private-key-used.pem
rsa.public-key=classpath:certs/public-key.pem

Services et authentification

AuthUser

Créer une classe AuthUser encapsulant un User et implémentant l'interface UserDetails de spring :

class AuthUser(user: User) : UserDetails {

 val user: User = user

 override fun getAuthorities(): MutableCollection<out GrantedAuthority> {
 return mutableListOf(SimpleGrantedAuthority("ROLE_USER"))
 }

 override fun getPassword(): String? = user.password

 override fun getUsername(): String? = user.username

 override fun isAccountNonExpired(): Boolean = true

 override fun isAccountNonLocked(): Boolean = true

 override fun isCredentialsNonExpired(): Boolean = true

 override fun isEnabled(): Boolean = user.enabled
}

UserRepository

Modifier votre UserRepository pour qu'il permette de rechercher un utilisateur par son login/username ou
email (à vous de choisir) :

@RepositoryRestResource(collectionResourceRel = "users", path = "users")
interface UserRepository : JpaRepository<User, UUID> {
 fun findByUsernameOrEmail(username: String, email: String): Optional<User>
}

Last update: 2024/04/16 13:58 web:framework:spring:oauth2 http://slamwiki2.kobject.net/web/framework/spring/oauth2

http://slamwiki2.kobject.net/ Printed on 2026/01/11 15:56

UserDetailsService

import org.springframework.beans.factory.annotation.Autowired
import org.springframework.security.core.userdetails.UserDetails
import org.springframework.security.core.userdetails.UserDetailsService
import org.springframework.security.core.userdetails.UsernameNotFoundException
import org.springframework.stereotype.Service

@Service
class JpaUserDetailsService : UserDetailsService {

 @Autowired
 lateinit var userRepository: UserRepository

 @Throws(UsernameNotFoundException::class)
 override fun loadUserByUsername(usernameOrEmail: String): UserDetails {
 val user: AuthUser = userRepository
 .findByUsernameOrEmail(usernameOrEmail, usernameOrEmail)
 .map { AuthUser(it) }
 .orElseThrow { UsernameNotFoundException("User name or email not found:
$usernameOrEmail") }

 return user
 }
}

AuthService

import org.springframework.beans.factory.annotation.Autowired
import org.springframework.security.core.Authentication
import org.springframework.security.core.GrantedAuthority
import org.springframework.security.crypto.password.PasswordEncoder
import org.springframework.security.oauth2.jwt.JwtClaimsSet
import org.springframework.security.oauth2.jwt.JwtDecoder
import org.springframework.security.oauth2.jwt.JwtEncoder
import org.springframework.security.oauth2.jwt.JwtEncoderParameters
import org.springframework.stereotype.Service
import java.time.Instant
import java.time.temporal.ChronoUnit
import java.util.*
import java.util.stream.Collectors

@Service
class AuthService {

 @Autowired
 private val jwtEncoder: JwtEncoder? = null

2026/01/11 15:56 5/9 Spring OAuth2

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 @Autowired
 lateinit var JwtDecoder: JwtDecoder

 @Autowired
 private val passwordEncoder: PasswordEncoder? = null

 @Autowired
 private val userRepository: UserRepository? = null

 fun generateToken(authentication: Authentication): String {
 val now = Instant.now()

 val scope: String = authentication.getAuthorities()
 .stream()
 .map { obj: GrantedAuthority -> obj.authority }
 .collect(Collectors.joining(" "))

 val claims = JwtClaimsSet.builder()
 .issuer("self")
 .issuedAt(now)
 .expiresAt(now.plus(10, ChronoUnit.HOURS))
 .subject(authentication.getName())
 .claim("scope", scope)
 .claim("user_id", (authentication.principal as AuthUser).user.id)
 .build()

 return jwtEncoder!!.encode(JwtEncoderParameters.from(claims)).tokenValue
 }

 //Exemple de récupération de données dans le token JWT
 fun getActiveUser(token: String): User {
 val claims = JwtDecoder.decode(token).claims
 val userId = claims["user_id"] as UUID
 return userRepository!!.findById(userId).orElseThrow {
RuntimeException("User not found") }
 }
}

Configuration

import com.nimbusds.jose.jwk.JWK
import com.nimbusds.jose.jwk.JWKSet
import com.nimbusds.jose.jwk.RSAKey
import com.nimbusds.jose.jwk.source.ImmutableJWKSet
import com.nimbusds.jose.jwk.source.JWKSource
import com.nimbusds.jose.proc.SecurityContext
import fr.zerp.api.security.JpaUserDetailsService
import fr.zerp.api.security.RsaKeyConfigProperties
import org.slf4j.Logger
import org.slf4j.LoggerFactory
import org.springframework.beans.factory.annotation.Autowired
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration

Last update: 2024/04/16 13:58 web:framework:spring:oauth2 http://slamwiki2.kobject.net/web/framework/spring/oauth2

http://slamwiki2.kobject.net/ Printed on 2026/01/11 15:56

import org.springframework.security.authentication.AuthenticationManager
import org.springframework.security.authentication.ProviderManager
import org.springframework.security.authentication.dao.DaoAuthenticationProvider
import org.springframework.security.config.Customizer
import
org.springframework.security.config.annotation.method.configuration.EnableMethodSec
urity
import org.springframework.security.config.annotation.web.builders.HttpSecurity
import
org.springframework.security.config.annotation.web.configuration.EnableWebSecurity
import
org.springframework.security.config.annotation.web.configurers.CorsConfigurer
import
org.springframework.security.config.annotation.web.configurers.CsrfConfigurer
import
org.springframework.security.config.annotation.web.configurers.SessionManagementCon
figurer
import
org.springframework.security.config.annotation.web.configurers.oauth2.server.resour
ce.OAuth2ResourceServerConfigurer
import org.springframework.security.config.http.SessionCreationPolicy
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder
import org.springframework.security.crypto.password.PasswordEncoder
import org.springframework.security.oauth2.jwt.JwtDecoder
import org.springframework.security.oauth2.jwt.JwtEncoder
import org.springframework.security.oauth2.jwt.NimbusJwtDecoder
import org.springframework.security.oauth2.jwt.NimbusJwtEncoder
import org.springframework.security.web.SecurityFilterChain
import org.springframework.web.servlet.handler.HandlerMappingIntrospector

@Configuration
@EnableWebSecurity
@EnableMethodSecurity
class SecurityConfig {

 @Autowired
 lateinit var rsaKeyConfigProperties: RsaKeyConfigProperties

 @Autowired
 lateinit var userDetailsService: JpaUserDetailsService

 @Bean
 fun authManager(): AuthenticationManager {
 val authProvider = DaoAuthenticationProvider()
 authProvider.setUserDetailsService(userDetailsService)
 authProvider.setPasswordEncoder(passwordEncoder())
 return ProviderManager(authProvider)
 }

 @Bean
 @Throws(Exception::class)
 fun filterChain(http: HttpSecurity, introspector: HandlerMappingIntrospector?):
SecurityFilterChain {

2026/01/11 15:56 7/9 Spring OAuth2

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 return http
 .csrf { csrf: CsrfConfigurer<HttpSecurity> ->
 csrf.disable()
 }
 .cors { cors: CorsConfigurer<HttpSecurity> -> cors.disable() }
 .authorizeHttpRequests { auth ->
 auth.requestMatchers("/error/**").permitAll()
 auth.requestMatchers("/api/auth/**").permitAll()
 auth.requestMatchers("/h2-console/**").permitAll()
 auth.anyRequest().authenticated()
 }.headers { headers ->
 headers.frameOptions { it.sameOrigin() }
 }
 .sessionManagement { s: SessionManagementConfigurer<HttpSecurity?> ->
 s.sessionCreationPolicy(
 SessionCreationPolicy.STATELESS
)
 }
 .oauth2ResourceServer { oauth2:
OAuth2ResourceServerConfigurer<HttpSecurity?> ->
 oauth2.jwt { jwt ->
 jwt.decoder(
 jwtDecoder()
)
 }
 }
 .userDetailsService(userDetailsService)
 .httpBasic(Customizer.withDefaults())
 .build()
 }

 @Bean
 fun jwtDecoder(): JwtDecoder {
 return
NimbusJwtDecoder.withPublicKey(rsaKeyConfigProperties.publicKey).build()
 }

 @Bean
 fun jwtEncoder(): JwtEncoder {
 val jwk: JWK =
RSAKey.Builder(rsaKeyConfigProperties.publicKey).privateKey(rsaKeyConfigProperties.
privateKey).build()

 val jwks: JWKSource<SecurityContext> = ImmutableJWKSet(JWKSet(jwk))
 return NimbusJwtEncoder(jwks)
 }

 @Bean
 fun passwordEncoder(): PasswordEncoder {
 return BCryptPasswordEncoder()
 }

 companion object {
 private val log: Logger =
LoggerFactory.getLogger(SecurityConfig::class.java)
 }

Last update: 2024/04/16 13:58 web:framework:spring:oauth2 http://slamwiki2.kobject.net/web/framework/spring/oauth2

http://slamwiki2.kobject.net/ Printed on 2026/01/11 15:56

}

Authentification

DTO

class AuthDTO {
 @JvmRecord
 data class LoginRequest(val username: String, val password: String)

 @JvmRecord
 data class Response(val message: String, val token: String)
}

Controller

@RestController
@RequestMapping("/api/auth")
@Validated
class AuthController {

 @Autowired
 lateinit var authService: AuthService

 @Autowired
 lateinit var authenticationManager: AuthenticationManager

 @PostMapping("/login")
 @Throws(IllegalAccessException::class)
 fun login(@RequestBody userLogin: AuthDTO.LoginRequest): ResponseEntity<*> {
 val authentication: Authentication =
 authenticationManager
 .authenticate(
 UsernamePasswordAuthenticationToken(
 userLogin.username,
 userLogin.password
)
)
 SecurityContextHolder.getContext().authentication = authentication
 val userDetails = authentication.getPrincipal() as AuthUser
 log.info("Token requested for user :{}", authentication.getAuthorities())
 val token = authService.generateToken(authentication)
 val response: AuthDTO.Response = AuthDTO.Response("User logged in
successfully", token)
 return ResponseEntity.ok<Any>(response)
 }

 companion object {
 private val log: Logger =

2026/01/11 15:56 9/9 Spring OAuth2

SlamWiki 2.1 - http://slamwiki2.kobject.net/

LoggerFactory.getLogger(AuthController::class.java)
 }
}

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/framework/spring/oauth2

Last update: 2024/04/16 13:58

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/framework/spring/oauth2

	Spring OAuth2
	Dépendances
	Sécurisation
	Génération des clés
	Usage des clés RSA
	Signature des JWT (JSON Web Tokens)
	Vérification des JWT

	Intégration RSA/Spring
	Services et authentification
	AuthUser
	UserRepository
	UserDetailsService
	AuthService

	Configuration
	Authentification
	DTO
	Controller

