
2026/02/17 11:08 1/3 TD JS-TS

SlamWiki 2.1 - http://slamwiki2.kobject.net/

TD JS-TS

Revoir les concepts fondamentaux de JavaScript avant d'aborder React/Next.js.
Pratiquer la manipulation des tableaux, objets et l'asynchronisme.
Introduire TypeScript progressivement en montrant ses avantages.

Partie 1 : Rappel des Bases de JavaScript

Exercice 1 : Portée des Variables

Objectif : Comprendre la différence entre var, let et const.

function testScope() {
 if (true) {
 var a = "var variable";
 let b = "let variable";
 const c = "const variable";
 }
 console.log(a); // Que se passe-t-il ici ?
 console.log(b); // Et ici ?
 console.log(c); // Et ici ?
}
testScope();

Question : Pourquoi certaines variables provoquent-elles une erreur ?

Exercice 2 : Fonctions d'Ordre Supérieur

Objectif : Utiliser map, filter et reduce pour manipuler des tableaux.

const students = [
 { name: "Alice", grade: 15 },
 { name: "Bob", grade: 9 },
 { name: "Charlie", grade: 18 }
];

Créer un tableau contenant uniquement les noms des étudiants1.
Filtrer les étudiants ayant une note supérieure ou égale à 102.
Calculer la moyenne des notes3.
Ecrire ces fonctions avec des fonctions fléchées.4.

Last update: 2025/08/12 02:35 web:ts:exercices http://slamwiki2.kobject.net/web/ts/exercices?rev=1739239327

http://slamwiki2.kobject.net/ Printed on 2026/02/17 11:08

Exercice 3 : Asynchronisme

Objectif : Pratiquer fetch et async/await.

async function fetchUsers() {
 try {
 const response = await fetch('https://jsonplaceholder.typicode.com/users');
 if (!response.ok) {
 throw new Error('Erreur lors de la récupération des utilisateurs');
 }
 const users = await response.json();
 console.log(users);
 } catch (error) {
 console.error(error.message);
 }
}
fetchUsers();

Questions : Pourquoi await doit-il être utilisé dans une fonction async ? Comment gérer les erreurs de
récupération des données ?

Partie 2 : Introduction à TypeScript

Exercice 4 : Ajout de Types

Objectif : Convertir un code JavaScript en TypeScript en ajoutant des types.

function greet(name: string, age: number): string {
 return `Bonjour ${name}, tu as ${age} ans.`;
}

console.log(greet("Alice", 25));

Question : Que se passe-t-il si on passe un nombre à la place d'une chaîne de caractères pour name ?

Exercice 5 : Interfaces et Types

Objectif : Définir des types pour mieux structurer les données.

interface Student {
 name: string;
 grade: number;
}

const student: Student = { name: "Alice", grade: 15 };
console.log(student);

2026/02/17 11:08 3/3 TD JS-TS

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Bonus : Créer un tableau de Student et réutiliser les mêmes fonctions d'ordre supérieur en TypeScript.

Exercice 6 : Classes en TypeScript

Objectif : Introduire les classes avec TypeScript.

class Person {
 name: string;
 age: number;

 constructor(name: string, age: number) {
 this.name = name;
 this.age = age;
 }

 introduce(): string {
 return `Je m'appelle ${this.name} et j'ai ${this.age} ans.`;
 }
}

const alice = new Person("Alice", 25);
console.log(alice.introduce());

Question : Que se passe-t-il si on oublie d'initialiser name ou age dans le constructeur ?

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/ts/exercices?rev=1739239327

Last update: 2025/08/12 02:35

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/ts/exercices?rev=1739239327

	TD JS-TS
	Partie 1 : Rappel des Bases de JavaScript
	Exercice 1 : Portée des Variables
	Exercice 2 : Fonctions d'Ordre Supérieur
	Exercice 3 : Asynchronisme

	Partie 2 : Introduction à TypeScript
	Exercice 4 : Ajout de Types
	Exercice 5 : Interfaces et Types
	Exercice 6 : Classes en TypeScript

