2026/02/17 11:08 1/3

TDJS-TS

TD JS-TS

¢ Revoir les concepts fondamentaux de JavaScript avant d'aborder React/Next.js.
¢ Pratiquer la manipulation des tableaux, objets et I'asynchronisme.
¢ Introduire TypeScript progressivement en montrant ses avantages.

Partie 1 : Rappel des Bases de JavaScript

Exercice 1 : Portée des Variables
Objectif : Comprendre la différence entre var, let et const.

function testScope() {

if (true) {
var a = "var variable";
let b = "let variable";
const ¢ = "const variable";
}

console.log(a); // Que se passe-t-il ici ?
console.log(b); // Et ici ?
console.log(c); // Et ici ?

}
testScope();

Question : Pourquoi certaines variables provoquent-elles une erreur ?

Exercice 2 : Fonctions d'Ordre Supérieur

Objectif : Utiliser map, filter et reduce pour manipuler des tableaux.

const students = [
{ name: "Alice", grade: 15 },
{ name: "Bob", grade: 9 },
{ name: "Charlie", grade: 18 }

Créer un tableau contenant uniquement les noms des étudiants
Filtrer les étudiants ayant une note supérieure ou égale a 10
Calculer la moyenne des notes

Ecrire ces fonctions avec des fonctions fléchées.

PN

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/08/12 02:35 web:ts:exercices http://slamwiki2.kobject.net/web/ts/exercices?rev=1739239327

Exercice 3 : Asynchronisme
Objectif : Pratiquer fetch et async/await.

async function fetchUsers() {

try {
const response = await fetch('https://jsonplaceholder.typicode.com/users');

if (!response.ok) {
throw new Error('Erreur lors de la récupération des utilisateurs');

}

const users = await response.json();
console.log(users);

} catch (error) {
console.error(error.message) ;

}

}
fetchUsers();

Questions : Pourquoi await doit-il étre utilisé dans une fonction async ? Comment gérer les erreurs de
récupération des données ?

Partie 2 : Introduction a TypeScript

Exercice 4 : Ajout de Types
Objectif : Convertir un code JavaScript en TypeScript en ajoutant des types.

function greet(name: string, age: number): string {
return “Bonjour ${name}, tu as ${age} ans.’;

}

console.log(greet("Alice", 25));

Question : Que se passe-t-il si on passe un nombre a la place d'une chaine de caractéres pour name ?

Exercice 5 : Interfaces et Types
Objectif : Définir des types pour mieux structurer les données.

interface Student {
name: string;
grade: number;

}

const student: Student = { name: "Alice", grade: 15 };
console. log(student);

http://slamwiki2.kobject.net/ Printed on 2026/02/17 11:08



2026/02/17 11:08 3/3 TD JS-TS

Bonus : Créer un tableau de Student et réutiliser les mémes fonctions d'ordre supérieur en TypeScript.

Exercice 6 : Classes en TypeScript
Objectif : Introduire les classes avec TypeScript.

class Person {
name: string;
age: number;

constructor(name: string, age: number) {
this.name = name;
this.age = age;

}

introduce(): string {
return “Je m'appelle ${this.name} et j'ai ${this.age} ans. ;
}
}

const alice = new Person("Alice", 25);

console.log(alice.introduce());

Question : Que se passe-t-il si on oublie d'initialiser name ou age dans le constructeur ?

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/web/ts/exercices?rev=1739239327

Last update: 2025/08/12 02:35

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/web/ts/exercices?rev=1739239327

	TD JS-TS
	Partie 1 : Rappel des Bases de JavaScript
	Exercice 1 : Portée des Variables
	Exercice 2 : Fonctions d'Ordre Supérieur
	Exercice 3 : Asynchronisme

	Partie 2 : Introduction à TypeScript
	Exercice 4 : Ajout de Types
	Exercice 5 : Interfaces et Types
	Exercice 6 : Classes en TypeScript


